

Recent activities at CRIB (CNS, the University of Tokyo)

Nuclear astrophysics group (CRIB supporting members) in Center for Nuclear Study, Univ. of Tokyo: Hidetoshi Yamaguchi 山口英斉 (Group leader/Lecturer), Seiya Hayakawa, Lei Yang (Postdoc.), Hideki Shimizu (Grad. Student) **Technical Staff:** CRIB/Wien Filter: Y. Kotaka, K. Yoshimura, M.Katayanagi, Hyper ECR ion source: Y. Ohshiro in Collaboration with: RIKEN, KEK, Kyushu, Tsukuba, Tohoku, Osaka (Japan), McMaster (Canada), CIAE, IMP, Beihang (China), Chung-Ang, IBS, Ehwa, SKKU (Korea), INFN Padova/Catania (Italy), IOP(Vietnam) and

others.

CRIB/OEDO in RIBF

Facilities operated by CNS, the University of Tokyo in RIBF (RIKEN Nishina center)

- CRIB: RI beam separator for low-mass, low-energy (<10 MeV/u) RI beams
- SHARAQ: high resolution spectrometer
- OEDO: new low-energy (10-50 MeV/u) beamline for exotic beams

CRIB

- CNS Radio-Isotope Beam separator, constructed and operated by CNS, Univ. of Tokyo, located at RIBF (RIKEN Nishina Center).
 - Low-energy(<10MeV/u) RI beams by in-flight method.</p>
 - Primary beam from K=70 AVF cyclotron.
 - Momentum (Magnetic rigidity) separation by "double achromatic" system, and velocity separation by a Wien filter.
 - Orbit radius: 90 cm, solid angle: 5.6 msr, momentum resolution: 1/850.

Low-Energy RI beam Productions at CRIB

2-body reactions such as (p,n), (d,p) and (³He,n) in inverse kinematics are mainly used for the production....large cross section

Many **RI beams** have been produced at CRIB: typically 10⁴-10⁶ pps

RIBF meeting, Dec. 2017

Intense secondary beam production using cryogenic gas target

- H₂ gas target of 760 Torr and 80 mm-long worked at 85K stably for a ⁷Li²⁺ beam of 1.3 pµA. (which deposits heat of 7.4W).
- Secondary beam: ⁷Be⁴⁺ at 4.0 MeV/u, purity 75% (without degrader/WF),
 - 2x10⁸ pps was achieved. *H. Yamaguchi et al., NIMA (2008)*

RIBF meeting, Dec. 2017

CRIB is collaborative

• CRIB experiments during 2007-2010 proposed by external groups:

CRIB is collaborative

• CRIB experiments after 2010 proposed by external groups:

CRIB is productive ...publications in the last 5 years

Proton resonant scattering; astrophysical reactions, galactic γ-ray from ²⁶Al. ²⁶S i+p; H.S. Jung et al., Phys. Rev. C (2012).

²⁵Al+p; Jun Chen et al., Phys. Rev. C(2012), H.S. Jung et al., Phys. Rev. C (2014).

²¹Na+p; J.J. He et al., Phys. Rev. C (2013), L.Y. Zhang et al., Phys. Rev. C (2014).

²²Na+p; S. Jin et al., Phys. Rev. C (2012).

¹⁷F+p; J. Hu et al., Phys. Rev. C (2014).

α -resonant scattering; α clustering and (α , γ) reactions

⁷Li+ α /⁷Be+ α ; H. Yamaguchi et al., Phys. Rev. C (2011 and 2013).

³⁰S +α; D. Kahl, Dr. thesis at Univ. of Tokyo (2015), Phys. Rev. C (2018).

¹⁰Be+ α ; H. Yamaguchi et al., Phys. Lett. B (2017).

(α, p) direct reaction measurement

¹¹C(α ,p); S. Hayakawa, Dr. thesis at Univ. of Tokyo (2012), Phys. Rev. C (2016). ¹⁴O+ α ; A. Kim et al., Phys. Rev. C (2015).

Indirect astrophysical reaction measurement

¹⁸F(p,α); Trojan Horse Method with RI beam S. Cherubini et al., Phys. Rev. C (2015). ¹²N(p,γ) by ANC B. Guo et al., Phys. Rev. C (2013).

Reaction mechanism

¹⁷F+¹²C; Quasi-elastic scattering G.L. Zhang et al., Eur. Phys. J. A (2012). #9

Beamtime at **CRIB**, 2016-2017

Measurement of the 7Be(d,p) Reaction with Implanted 7Be target and the Primordial 7Li Production in the Big Bang A. Tamii (RCNP)/H. Yamaguchi (CNS)

Beamtime used: 2 days (3 days remaining). The first production of implanted ⁷Be target at CRIB in Jun. 2016. (d,p) measurement at JAEA Tandem followed, using the implanted target. To be completed in 2018.

^{26m}Al proton resonant elastic scattering with CRIB D. Kahl (Edinburgh)

2+12 days. The first ²⁶Al (ground state+isomer) beam production at CRIB in Jul, 2016. ^{26m}Al+p resonant scattering at CRIB in Mar. 2017, isomeric purity ~50%.

Study of alpha cluster structure in ²²Mg K.Y. Chae (SKKU)

10 days in Sep. 2016. New resonances in ²²Mg are observed by a broad range scan.

Indirect study of the Big Bang Nucleosynthesis reactions ⁷Be(n,p)⁷Li and ⁷Be(n,α)⁴He by the Trojan Horse Method S. Hayakawa (CNS)

14 days in Nov. 2016. The second Trojan Horse experiment performed at CRIB.

The thick-target method in inverse kinematics

Measurement of resonance scattering

- Inverse kinematics... measurement is possible for short-lived RI which cannot be used as the target.
- Simultaneous measurement of the excitation function for certain energy range.(S mall systematic error, no need to change beam energy.)
- The beam can be stopped in the target...measurement at θ_{cm}=180 deg. (where the potential scattering is minimal) is possible.

¹⁰Be+α

- Linear-chain cluster state: has not been found since its first prediction by Morinaga in 1956.
- Linear-chain cluster states in ¹⁴C were predicted in Suhara & En'yo calculation.
- Asymmetric, ${}^{10}Be+\alpha$ configuration ...likely to be observed with ${}^{10}Be+\alpha$ alpha-resonant scattering.
- May form a band with $J^{\pi}=0^+, 2^+, 4^+$ a few MeV above α -threshold.
- Scattering of two 0⁺ particles...only *l*-dependent resonant profile. *RIBF meeting, Dec. 2017*

Experimental setup

Thick target method in inverse kinematics, similar to the previous ${}^{7}Be+\alpha$.

- •Two PPACs for the beam PI, trajectory, number of particles.
- •Two silicon detector telescopes for recoiling α partciles.
- • E_{cm} and θ obtained by event-by-event kinematic reconstruction. RIBF meeting, Dec. 2017 #16

Excitation function

- The excitation function we obtained for 13.8-19.2 MeV exhibits many resonances.
- R-matrix analysis was performed to determine resonance parameters (E, J^π, Γ_α).

Rotational Band

The set of resonances we observed $(0^+, 2^+, 4^+)$ is proportional to J(J+1) ... consistent with a view of rotational band.

In a good agreement with the theoretical predictions; Suhara-En'yo (2010)/ Baba-Kimura (2016).

RIBF meeting, Dec. 2017

³⁰S(α,p)

- ${}^{30}S(\alpha,p) \dots$ one of the key reaction in X-ray bursts.
- Scarce ³⁴Ar resonance information, reaction rate evaluation was only by statistical model.
- ³⁰S +α resonant scattering with active target (D. Kahl et al., Phys Rev. C, accepted yesterday).
- 3 higher-lying resonances were observed:

RIBF meeting, Dec. 2017

1

- Acts as a He target and a detector (TPC) simultaneously
 - GEM with "backgammon" type readout pad.
- 3-dimentional trajectory and energy loss can be measured \Rightarrow Accurate event identification.

Astrophysical implications

Reaction rate (upper limit) evaluation with RCNP(Osaka) ³⁶Ar(p,t)³⁴Ar transfer reaction data + CRIB(Tokyo) resonant scattering data

⇒Higher than the stat. model rate calculation

⇐Energy generation higher than the statistical model
25% enhancement [even with this single reaction].
-Max. 30% of abundance change for A=20-80 nuclei.

Cosmological ⁷Li problem

- ⁷Li problem... disagreement between theory and observation by a factor of 3–4
 - Due to CMB obs.? Low-metallicity stars obs.? Standard BBN model? Nuclear Physics?
 - ⁷Be abundance in the end of BBN determines ⁷Li predominantly
 - $p(n,\gamma)d$, ³He $(d,p)^4$ He, ⁷Be $(n,p)^7$ Li, ⁷Be $(n,\alpha)^4$ He, ⁷Be $(d,p)2\alpha$, etc.

$^{7}Be(n,p)^{7}Li (Q = 1.644 \text{ MeV})$

$^{7}\text{Be}(n,\alpha)^{4}\text{He} (Q = 18.990 \text{ MeV})$

Revised reaction rate from mirror reaction by Hou+ (2015) Direct measurement up to 10 keV by Barbagallo+ at n_TOF (2016) Measured only α decays after γ -ray emission from ⁸Be excited states S-wave only $\rightarrow 1/v$ low Time-reversal reaction measurement down to 200 keV by Kawabata+ at RCNP (2017) Measured p-wave neutrons \rightarrow dominant at BBN energies

Trojan Horse Method for RI + n

 ${}^{7}Be(n,p){}^{7}Li, {}^{7}Be(n,\alpha){}^{4}He via {}^{2}H({}^{7}Be,{}^{7}Lip){}^{1}H, {}^{2}H({}^{7}Be,\alpha\alpha){}^{1}H$

- Powerful method to approach astrophysical energies.
- One of the first applications of THM to RI + n reactions.
- Normalization to external data at higher energies.

Experimental setup

 CD_2 : 64 µg/cm² $\rightarrow \Delta E_{beam} \sim 150 \text{ keV}$

Hamamatsu Charge-division PSD: position resolution ~ 0.5 mm

6 ΔE-E position sensitive silicon telescopes

Total angular resolution

 $\sim 0.5^{\circ} \Rightarrow \Delta E_{\rm cm} \sim 60$ keV

Observed ~ 3000 Quasi-free events in 14-day beam##ime

Q-value spectra of the 3-body channels

⁷Be(d,⁷Lip)p

⁷Be(d,2α)p

Reaction	<i>Q</i> -value (MeV)
<i>p</i> +2α	16.766
⁷ Li+2 <i>p</i>	-0.589
⁷ Be+ <i>n</i> + <i>p</i>	-2.225
⁵He+ <i>p</i> +³He	-4.547

 $Q_{3body} = E_1 + E_2 + E_3 - E_{beam}$ $\Delta Q_{3body} \sim \sqrt{(\Delta E_1^2 + \Delta E_2^2 + \Delta E_3^2 + \Delta E_{beam}^2)}$ ~ 200 keV expected with 64 µg/cm² CD₂ #41

HOES cross sections for $|p_s| < 40 \text{ MeV/c}$

Summary

- CRIB is a low-energy RI beam facility in RIBF operated by CNS, University of Tokyo, providing low-energy (<10MeV/u) RI beams with high intensity and purity.
- Many interests: Cluster structure with alpha resonant scattering, astrophysical (α,p) reaction measurement, reaction mechanism study, indirect measurements (THM and ANC), AI-26 isomeric beam for the cosmic gamma-rays, implanted RI target.
- We welcome new collaborators and new ideas. Please contact with me if you have any idea.
- The proposals are judged at the NP-PAC meeting (now once in a year in December), same as other RIBF facilities.
- Visit CRIB webpage for more information. http://www.cns.s.utokyo.ac.jp/crib/crib-new/