Recent progress on nucleon charges from lattice QCD

Takashi Kaneko (KEK, Sokendai)

13th meeting on high energy QCD and nucleon structure

nucleon ME of quark bi-linear operator

nucleon ME of quark bi-linear operator

• (polarized) nucleon @ rest $p=0 \Leftrightarrow$ normalization of FF

$$g_{\Gamma,q} = \frac{1}{2M_N} \langle N(p,s) | \overline{q} \Gamma q | N(p,s) \rangle$$

nucleon charge

nucleon ME of quark bi-linear operator

- (polarized) nucleon @ rest $p=0 \iff$ normalization of FF
- in this talk : scalar, axial and tensor \otimes up, down, strange

$$S_{q} = \frac{1}{2M_{N}} \langle N | \overline{u}u | N \rangle$$

$$\Delta_{q} = \frac{1}{2M_{N}} \langle N (s_{z} = 1/2) | \overline{u}\gamma_{3}\gamma_{5}u | N (s_{z} = 1/2) \rangle$$

$$\delta_{q} = \frac{1}{2M_{N}} \langle N (s_{z} = 1/2) | \overline{u}\sigma_{03}\gamma_{5}u | N (s_{z} = 1/2) \rangle$$

and "
$$\overline{d}\Gamma d$$
", " $\overline{s}\Gamma s$ "

or linear combinations for lattice, phenomenology

in nuclear physics

fundamental parameters on nucleon structure $S_{q} = \langle N | \overline{q} q | N \rangle$

in nuclear physics fundamental parameters on nucleon structure $S_{q} = \left\langle N \left| \overline{q} q \right| N \right\rangle \quad T_{\mu}^{\mu} = \frac{\beta}{2g} G_{\mu\nu}^{a} G^{a\mu\nu} + \sum_{q} m_{q} \overline{q} q \quad \text{trace anomaly of} \\ \text{energy-mom tensor}$ $2M_{N}^{2} = 2p^{2} = \langle N(p) | T_{\mu}^{\mu} | N(p) \rangle \Rightarrow m_{u}S_{u} + m_{d}S_{d} + m_{s}S_{s}$ rotation \rightarrow angular momentum operator $\boldsymbol{J}_{k} = \int d^{3}x \left\{ \overline{\boldsymbol{q}} \boldsymbol{\gamma} \boldsymbol{\gamma}_{5} \boldsymbol{q} + i \boldsymbol{q}^{\dagger} \left(\boldsymbol{x} \times \boldsymbol{D} \right) \boldsymbol{q} + \cdots \right\}$ $\frac{1}{2}\Sigma \simeq \frac{1}{2} \left(\Delta_u + \Delta_d + \Delta_s \right)$ $\Delta_{q} = \left\langle N \left| \overline{q} \gamma_{k} \gamma_{5} q \right| N \right\rangle$

in nuclear physics fundamental parameters on nucleon structure $S_{q} = \left\langle N \left| \overline{q} q \right| N \right\rangle \quad T_{\mu}^{\mu} = \frac{\beta}{2g} G_{\mu\nu}^{a} G^{a\mu\nu} + \sum_{a} m_{q} \overline{q} q \quad \text{trace anomaly of} \\ \text{energy-mom tensor}$ $2M_{N}^{2} = 2p^{2} = \langle N(p) | T_{\mu}^{\mu} | N(p) \rangle \Rightarrow m_{u}S_{u} + m_{d}S_{d} + m_{s}S_{s}$ rotation \rightarrow angular momentum operator $\boldsymbol{J}_{k} = \int d^{3}x \left\{ \overline{\boldsymbol{q}} \boldsymbol{\gamma} \boldsymbol{\gamma}_{5} \boldsymbol{q} + i \boldsymbol{q}^{\dagger} \left(\boldsymbol{x} \times \boldsymbol{D} \right) \boldsymbol{q} + \cdots \right\}$ $\frac{1}{2}\Sigma \simeq \frac{1}{2} \left(\Delta_u + \Delta_d + \Delta_s \right)$ $\Delta_{q} = \left\langle N \left| \overline{q} \gamma_{k} \gamma_{5} q \right| N \right\rangle$

quark contribution to nucleon mass, spin

Electron-Ion Collider

arXiv: 1212.1701

search for new physics beyond the standard model

the SM

search for new physics beyond the standard model

the SM

search for new physics beyond the standard model

SUPERSYMMETRY

Standard particles

SUSY particles

new physics

··· or else

search for new physics beyond the standard model

Standard particles

xtra-dimension

new theory w/ new physics

··· or else

2-(D, \$) D + - U(+) - 4 F ~ F ~

direct search for dark matter

dark matter XMASS @ Kamioka *e.g.* neutralino χ in SUSY $N\chi$ scattering via Higgs h χ NXe detect momentum

transfer to Xe

direct search for dark matter

• scalar charges $m_q S_q = m_q < N |qq|N>$ appear

• enhancement by $m_q \rightarrow$ strange quark charge S_s important

search @ J-PARC

μ -e conversion and nEDM

search e J-PARC

μ -*e* conversion and nEDM

 $\mathcal{L}_{int} \ni \sum_{q} C_{S,q} m_q \, \overline{q} q \cdot m_\mu \overline{e} \, \mu$ $S_a \to \text{amplitude in muonic atom}$

search @ J-PARC

μ -e conversion and nEDM

 $S_q \rightarrow$ amplitude in muonic atom

search @ J-PARC

μ -e conversion and nEDM

nucleon charges are fundamental input in searches for NP

lattice calculation of scalar, axial and tensor charges

JLQCD - N. Yamanaka (Orsay, RIKEN) et al. - in preparation

lattice calculation of scalar, axial and tensor charges

JLQCD - N. Yamanaka (Orsay, RIKEN) et al. - in preparation

outline

- how to calculate nucleon charges on the lattice
- difficulties and challenges isovector charge g_A -
- isoscalar charges uu+dd; each flavor uu, dd, ss
- summary + our perspective

1. how to calculate nucleon charges on the lattice

• QCD formulated on discrete Euclid lattice

- QCD formulated on discrete Euclid lattice
- QCD path integral and d.o.f.

 $\langle O \rangle = \int [d\overline{q}] [dq] [dA] O \exp [-S_{QCD}]$

- QCD formulated on discrete Euclid lattice
- QCD path integral and d.o.f.

$$\langle O \rangle = \int [d\overline{q}] [dq] [dA] O \exp [-S_{QCD}]$$

quark : on each lattice site

 $q_{a\alpha}{}^{f}(x)$: $4 \times N_c \times N_f \times 2$ real variables

gluon : on each link b/w 2 adjacent sites

 $A_{\mu}^{a}(x)$: 4 ×(N_{c}^{2} -1) real variables

finite volume \Rightarrow #d.o.f. = 152× #sites \Rightarrow 23×10⁶ / (16³×32)

- QCD formulated on discrete Euclid lattice
- QCD path integral and d.o.f.

$$\langle O \rangle = \int [d\overline{q}] [dq] [dA] O \exp [-S_{QCD}]$$

• quark : on each lattice site

 $q_{a\alpha}{}^{f}(x)$: $4 \times N_c \times N_f \times 2$ real variables

gluon : on each link b/w 2 adjacent sites

 $A_{\mu}^{a}(x)$: 4 ×(N_{c}^{2} -1) real variables

finite volume \Rightarrow #d.o.f. = 152× #sites \Rightarrow 23×10⁶ / (16³×32)

integral by hand : difficult / perturbative expansion

generate field configurations on powerful computer

generate field configurations on powerful computer

generate field configurations on powerful computer

 $\langle O \rangle = \int [dA] [d\overline{q}] [dq] O \exp[-S_{\text{QCD}}] = \lim_{N_{\text{conf}} \to \infty} \frac{1}{N_{\text{conf}}} \sum_{i=1}^{N_{\text{conf}}} O[C_i]$

generate field configurations on powerful computer

 $\langle O \rangle = \int [dA] [d\overline{q}] [dq] O \exp[-S_{\text{QCD}}] = \lim_{N_{\text{conf}} \to \infty} \frac{1}{N_{\text{conf}}} \sum_{i=1}^{N_{\text{conf}}} O[C_i]$

generate field configurations on powerful computer

 $\langle O \rangle = \int [dA] [d\overline{q}] [dq] O \exp[-S_{\text{QCD}}] = \lim_{N_{\text{conf}} \to \infty} \frac{1}{N_{\text{conf}}} \sum_{i=1}^{N_{\text{conf}}} O[C_i]$

non-perturbative method to study QCD ! control of "statistical" and "systematic" uncertainties

how to calculate nucleon charges nucleon 3-point function *e.g.* up quark charge of proton

how to calculate nucleon charges

nucleon 3-point function

e.g. up quark charge of proton

- inverse of Dirac operator D^{-1} $S_q = \sum_{\text{space-time, color, spinor}} \overline{q}_X D_{XY} q_Y$
- huge matrix $O(10^7) \times O(10^7) \Rightarrow$ need "super computer"
- still can calculate part of D^{-1} (discuss later)

the JLQCD collaboration

lattice simulations (mainly) on computers @ KEK

YITP: Sinya Aoki

Osaka: Tetsuya Onogi,

Hidenori Fukaya 📉

Nara: Hiroshi Ohki

KEK: Shoji Hashimoto, Yasumichi Aoki,
TK, Brian Colquhoun, Kei Suzuki,
Katsumasa Nakayama
Oversea: Nodoka Yamanaka, Guido
Cossu, Christian Rohrhofer

for 20 years since '96

KEK system 2011-2017

post-K (RIKEN)

Coming Soon 2020 -

• Nielsen-Ninomiya '82 : chiral symmetry $\Rightarrow e.g.$ renormalization

• Nielsen-Ninomiya '82 : chira metry $\Rightarrow e.g.$ renormalization

- Nielsen-Ninomiya '82 : chira metry $\Rightarrow e.g.$ renormalization
- chiral fermions (domain-wall, overlap) (Kaplan, Neuberger, …, '92-98)

- Nielsen-Ninomiya '82 : chira metry $\Rightarrow e.g.$ renormalization
- chiral fermions (domain-wall, overlap) (Kaplan, Neuberger, …, '92-98)
 QCD vacuum

- Nielsen-Ninomiya '82 : chira metry $\Rightarrow e.g.$ renormalization
- chiral fermions (domain-wall, overlap) (Kaplan, Neuberger, …, '92-98)

QCD vacuum

QCD phase structure

- Nielsen-Ninomiya '82 : chira metry $\Rightarrow e.g.$ renormalization
- chiral fermions (domain-wall, overlap) (Kaplan, Neuberger, …, '92-98)

QCD vacuum

fundamental parameters α_s , m_q

QCD phase structure

- Nielsen-Ninomiya '82 : chira metry $\Rightarrow e.g.$ renormalization
- chiral fermions (domain-wall, overlap) (Kaplan, Neuberger, …, '92-98)

QCD vacuum

fundamental parameters α_s , m_q

QCD phase structure

search of new physics

- Nielsen-Ninomiya '82 : chira metry $\Rightarrow e.g.$ renormalization
- chiral fermions (domain-wall, overlap) (Kaplan, Neuberger, …, '92-98)

QCD vacuum

fundamental parameters α_s , m_q

QCD phase structure

search of new physics

wide applications!!

 N_f =2+1 QCD w/ exact chiral symmetry using overlap action

N_f =2+1 QCD w/ exact chiral symmetry using overlap action

 $a = 0.11(1) \text{ fm} \Rightarrow O((aA)^2) \sim 8\% \text{ error}$

 N_f =2+1 QCD w/ exact chiral symmetry using overlap action

 $a = 0.11(1) \text{ fm} \Rightarrow O((aA)^2) \sim 8\% \text{ error}$

P post-diction of $g_A \otimes 1\%$ accuracy

new physics search, spin puzzle

 N_f =2+1 QCD w/ exact chiral symmetry using overlap action

 $m_u = m_d = m_{ud}$ 4 values of M_{π} 290 – 540 MeV

U

 $a = 0.11(1) \text{ fm} \Rightarrow O((aA)^2) \sim 8\% \text{ error}$

new physics search, spin puzzle

 N_f =2+1 QCD w/ exact chiral symmetry using overlap action

 $m_u = m_d = m_{ud}$ 4 values of M_{π} 290 – 540 MeV

U

 $a = 0.11(1) \text{ fm} \Rightarrow O((aA)^2) \sim 8\% \text{ error}$ post-diction of g_A @ 1% accuracy new physics search, spin puzzle

S
$$m_s \cong m_{s,\text{phys}}$$

 $N_f=2+1$ QCD w/ exact chiral symmetry using overlap action

 $m_u = m_d = m_{ud}$ 4 values of M_{π} 290 - 540 MeV

U

S

 $a = 0.11(1) \text{ fm} \Rightarrow O((aA)^2) \sim 8\% \text{ error}$ post-diction of g_A @ 1% accuracy new physics search, spin puzzle $16^3 \times 48, 24^3 \times 48$ $\Rightarrow M_{\pi}L \ge 4$ $m_s \cong m_{s, phys}$

 $N_f=2+1$ QCD w/ exact chiral symmetry using overlap action

Z. difficulties and challenges – isovector g_A –

Lepage's argument on 2-pt function (TASI, '89)

$$N_{\rm conf}\sigma_{\rm 2pt}^2 \sim \left\langle \left(O_N\left(\varDelta t\right)\overline{O}_N\left(0\right)\right)^2 \right\rangle - \left\langle O_N\left(\varDelta t\right)\overline{O}_N\left(0\right)\right\rangle^2$$

Lepage's argument on 2-pt function (TASI, '89)

$$\left\langle O_N\left(\Delta t\right)\overline{O}_N\left(0\right)\right\rangle \propto \exp\left[-M_N\Delta t\right]$$

$$N_{\rm conf}\sigma_{\rm 2pt}^2 \sim \left\langle \left(O_N\left(\Delta t\right)\overline{O}_N\left(0\right)\right)^2 \right\rangle - \left\langle O_N\left(\Delta t\right)\overline{O}_N\left(0\right)\right\rangle^2$$

Lepage's argument on 2-pt function (TASI, '89) $\left\langle O_{N}\left(\Delta t\right)\overline{O}_{N}\left(0\right)\right\rangle \propto \exp\left[-M_{N}\Delta t\right]$ $N_{\text{conf}}\sigma_{2\text{pt}}^{2} \sim \left\langle \left(O_{N}\left(\Delta t\right)\overline{O}_{N}\left(0\right)\right)^{2}\right\rangle - \left\langle O_{N}\left(\Delta t\right)\overline{O}_{N}\left(0\right)\right\rangle^{2}$

 $\propto e^{-3M_{\pi}\Delta t}$

 $\propto e^{-2M_N \Delta t} \ll$

Lepage's argument on 2-pt function (TASI, '89) $\left\langle O_{N}\left(\Delta t\right)\overline{O}_{N}\left(0\right)\right\rangle \propto \exp\left[-M_{N}\Delta t\right]$ $N_{\text{conf}}\sigma_{2\text{pt}}^{2} \sim \left\langle \left(O_{N}\left(\Delta t\right)\overline{O}_{N}\left(0\right)\right)^{2}\right\rangle - \left\langle O_{N}\left(\Delta t\right)\overline{O}_{N}\left(0\right)\right\rangle^{2}$

$$S_N \propto \sqrt{N_{conf}} \exp\left[-\left(M_N - 3M_{\pi}/2\right)\Delta t\right]$$

Lepage's argument on 2-pt function (TASI, '89) $\left\langle O_{N}\left(\Delta t\right)\overline{O}_{N}\left(0\right)\right\rangle \propto \exp\left[-M_{N}\Delta t\right]$ $N_{\rm conf}\sigma_{\rm 2pt}^2 \sim \left\langle \left(O_N\left(\Delta t\right)\overline{O}_N\left(0\right)\right)^2 \right\rangle - \left\langle O_N\left(\Delta t\right)\overline{O}_N\left(0\right)\right\rangle^2$ $\propto e^{-2M_N \Delta t} \ll$ $\propto e^{-3M_{\pi}\Delta t}$

$$S_N \propto \sqrt{N_{conf}} \exp\left[-\left(M_N - 3M_{\pi}/2\right)\Delta t\right]$$

- towards smaller (physical) $M_\pi \, \Leftrightarrow \,$ large M_π + chiral extrapolation
- towards larger $\Delta t \Leftrightarrow$ smaller Δt + excited state contamination

ground-state saturation

ground-state saturation

choice of $\Delta t^{(\prime)}$, O_N , fit form \Leftrightarrow target accuracy of g_A

chiral extrapolation

mild M_{π} dependence \Rightarrow test polynomial extrapolations

mild M_{π} dependence \Rightarrow test polynomial extrapolations

mild M_{π} dependence \Rightarrow test polynomial extrapolations

mild M_{π} dependence \Rightarrow test polynomial extrapolations

mild M_{π} dependence \Rightarrow test polynomial extrapolations $g_A = 1.13(3)_{stat} (3)_{chiral} (9)_{a \neq 0} \Leftrightarrow 1.278(2)$

effective theory of QCD based on chiral symmetry

• meson ChPT (Gasser-Leutwyler, '82) : work reasonably @ $M_{\pi} \leq 500$ MeV

effective theory of QCD based on chiral symmetry

- meson ChPT (Gasser-Leutwyler, '82) : work reasonably @ $M_{\pi} \leq 500$ MeV
- baryon ChPT (Gasser-Sainio-Svarc, '88)
 - dynamical d.o.f. : NG bosons + baryons
 - expansion in hadron momenta, mass

 $p \sim M_{\pi}, M_K \cdots \text{OK}, M_N ???$

effective theory of QCD based on chiral symmetry

- meson ChPT (Gasser-Leutwyler, '82) : work reasonably @ $M_{\pi} \leq$ 500MeV
- baryon ChPT (Gasser-Sainio-Svarc, '88)
 - dynamical d.o.f. : NG bosons + baryons
 - expansion in hadron momenta, mass $p \sim M_{\pi}, M_K \cdots$ OK, M_N ???

• predict functional form w/ free parameters + chiral logarithm $M_N = M_{N,0} \left(1 + c_2 M_{\pi}^2 + c_3 M_{\pi}^3 + c_4 M_{\pi}^4 \ln \left[M_{\pi}^2 \right] + \cdots \right)$

effective theory of QCD based on chiral symmetry

- meson ChPT (Gasser-Leutwyler, '82) : work reasonably @ $M_{\pi} \leq 500$ MeV
- baryon ChPT (Gasser-Sainio-Svarc, '88)
 - dynamical d.o.f. : NG bosons + baryons
 - expansion in hadron momenta, mass $p \sim M_{\pi}, M_K \cdots$ OK, M_N ???

• predict functional form w/ free parameters + chiral logarithm $M_{N} = M_{N,0} \left(1 + c_{2}M_{\pi}^{2} + c_{3}M_{\pi}^{3} + c_{4}M_{\pi}^{4} \ln \left[M_{\pi}^{2} \right] + \cdots \right)$

effective theory of QCD based on chiral symmetry

- meson ChPT (Gasser-Leutwyler, '82) : work reasonably @ $M_{\pi} \leq 500$ MeV
- baryon ChPT (Gasser-Sainio-Svarc, '88)
 - dynamical d.o.f. : NG bosons + baryons
 - expansion in hadron momenta, mass $p \sim M_{\pi}, M_K \cdots$ OK, M_N ???

• predict functional form w/ free parameters + chiral logarithm $M_{N} = M_{N,0} \left(1 + c_{2}M_{\pi}^{2} + c_{3}M_{\pi}^{3} + c_{4}M_{\pi}^{4} \ln \left[M_{\pi}^{2} \right] + \cdots \right)$ $O\left(p^{2} \right) O\left(p^{3} \right) = O\left(p^{4} \right) + \text{higher}$

effective theory of QCD based on chiral symmetry

- meson ChPT (Gasser-Leutwyler, '82) : work reasonably @ $M_{\pi} \leq 500$ MeV
- baryon ChPT (Gasser-Sainio-Svarc, '88)
 - dynamical d.o.f. : NG bosons + baryons
 - expansion in hadron momenta, mass $p \sim M_{\pi}, M_K \cdots$ OK, M_N ???

predict functional form w/ free parameters + chiral logarithm

$$M_{N} = M_{N,0} \left(1 + c_{2} M_{\pi}^{2} + c_{3} M_{\pi}^{3} + c_{4} M_{\pi}^{4} \ln \left[M_{\pi}^{2} \right] + \cdots \right)$$
$$O(p^{2}) O(p^{3}) O(p^{3}) O(p^{4}) + \text{higher}$$
$$1 + 0.34 - 0.35 + 0.24 + \cdots$$

• generally have slow convergence $p \ni M_N \Leftrightarrow p^2 \not \ni M_N^{-2}$

$$g_A = c_0 \left(1 + c_2 M_\pi^2 \ln \left[M_\pi^2 \right] \right)$$

$$g_A = c_0 \left(1 + c_2 M_\pi^2 \ln \left[M_\pi^2 \right] \right)$$

$$g_A = c_0 \left(1 + c_2 M_\pi^2 \ln \left[M_\pi^2 \right] \right)$$

$$g_A = c_0 \left(1 + c_2 M_\pi^2 \ln \left[M_\pi^2 \right] \right)$$

Bijnens et al. '85 Jenkins-Manohar '91 Detmold et al. '02

$$g_A = c_0 \left(1 + c_2 M_\pi^2 \ln \left[M_\pi^2 \right] \right)$$

large corrections @ simulated M_{π} 's \Rightarrow lattice and expr't data

- effort over a decade
 - \Rightarrow validation of LQCD
- systematically

smaller?

Chang et al. @ Lat'17: $g_A = 1.285(17) \ 1\% \Rightarrow$ chiral, finite V 0.2%

Chang et al. @ Lat'17: $g_A = 1.285(17) \ 1\% \Rightarrow$ chiral, finite V 0.2% very encouraging, systematics to be studied more extensively

isovector scalar and tensor charges

 $g_s = 0.88(8)_{\text{stat}}(3)_{\text{chiral}}(7)_{a\neq 0}$ $g_T = 1.08(3)_{\text{stat}}(3)_{\text{chiral}}(9)_{a\neq 0}$

isovector scalar and tensor charges $g_s = 0.88(8)_{\text{stat}}(3)_{\text{chiral}}(7)_{a\neq 0}$ $g_T = 1.08(3)_{\text{stat}}(3)_{\text{chiral}}(9)_{a\neq 0}$ constraint from β decay of ultra cold nertron (3mK!) Bhattacharya et al. '11 0.1% for b, b_{v} Low–energy future, $\delta g_s/g_s = 50\%$ 0.008 $\frac{d\Gamma(n \to pev)}{dE_e d\Omega_e d\Omega_v}$ 0.006 Low–energy future $\delta g_S/g_S =$ 0.004 εS 0.002 LHC @ 14 TeV 300 fb-0.000 -0.002-0.004 LHC @ 14 TeV, 10 fb⁻¹ -0.00100.0000 0.0005 0.0010 -0.0005

 ε_T

24

synergy of low- and high-energy experiments for NP search

3. isoscalar uu+dd, each flavor uu, dd, ss

disconnected diagram

e.g. light quark charge $\overline{u}u + \overline{d}d$, $\overline{u}u$, $\overline{d}d$

- generally present! $\Leftrightarrow \langle N | \overline{u} \Gamma u \overline{d} \Gamma d | N \rangle$ in isospin limit
- Zweig rule suppressed : small for light-quark charges?
- strange quark charges S_s , Δ_s , δ_s : purely disconnected

disconnected diagram

e.g. light quark charge $\overline{u}u + \overline{d}d$, $\overline{u}u$, $\overline{d}d$

- generally present! $\Leftrightarrow \langle N | \overline{u} \Gamma u \overline{d} \Gamma d | N \rangle$ in isospin limit
- Zweig rule suppressed : small for light-quark charges?
- strange quark charges S_s , Δ_s , δ_s : purely disconnected
- expensive to calculate \Rightarrow stochastic methods (\rightarrow backup slide) momentum projection $\mathbf{p}_N=0 \Rightarrow$ sum over vertex point \Rightarrow quark loops at arbitrary lattice sites! 26

disconnected diagram

e.g. light quark charge $\overline{u}u + \overline{d}d$, $\overline{u}u$, $\overline{d}d$

- generally present! $\Leftrightarrow \langle N | \overline{u} \Gamma u \overline{d} \Gamma d | N \rangle$ in isospin limit
- Zweig rule suppressed : small for light-quark charges?
- strange quark charges S_s , Δ_s , δ_s : purely disconnected
- expensive to calculate \Rightarrow stochastic methods (\rightarrow backup slide) momentum projection $\mathbf{p}_N=0 \Rightarrow$ sum over vertex point \Rightarrow quark loops at arbitrary lattice sites! 26

chiral symmetry greatly simplifies renormalization e.g. renormalization of \overline{ss}

$$(\overline{ss})_{\text{renorm}} = \frac{1}{2} \left[Z_s (\overline{ss})_{\text{bare}} + Z_{ud} (\overline{uu} + \overline{dd})_{\text{bare}} + \frac{Z_1}{a^3} \right]$$

chiral symmetry greatly simplifies renormalization e.g. renormalization of \overline{ss}

$$(\overline{ss})_{\text{renorm}} = \frac{1}{2} \left[Z_s (\overline{ss})_{\text{bare}} + Z_{ud} (\overline{uu} + \overline{dd})_{\text{bare}} + \frac{Z_1}{a^3} \right]$$

- potentially dangerous : $\bar{s}s \ll \bar{u}u + \bar{d}d$
- vanish for scalar, tensor in mass-independent scheme

$$Z_{ud} = Z_0 - Z_8, \quad \left(\overline{q}q\right)_{\text{renorm}} = Z_0 \left(\overline{q}q\right)_{\text{bare}}, \quad \left(\overline{q}\lambda^8 q\right)_{\text{renorm}} = Z_8 \left(\overline{q}\lambda^8 q\right)_{\text{bare}}$$

chiral symmetry greatly simplifies renormalization e.g. renormalization of \overline{ss}

$$(\overline{ss})_{\text{renorm}} = \frac{1}{2} \left[Z_s (\overline{ss})_{\text{bare}} + Z_{ud} (\overline{uu} + \overline{dd})_{\text{bare}} + \frac{Z_1}{a^3} \right]$$

- potentially dangerous : $\bar{s}s \ll \bar{u}u + \bar{d}d$
- vanish for scalar, tensor in mass-independent scheme

$$Z_{ud} = Z_0 - Z_8, \quad \left(\overline{q}q\right)_{\text{renorm}} = Z_0 \left(\overline{q}q\right)_{\text{bare}}, \quad \left(\overline{q}\lambda^8 q\right)_{\text{renorm}} = Z_8 \left(\overline{q}\lambda^8 q\right)_{\text{bare}}$$

chiral symmetry greatly simplifies renormalization e.g. renormalization of \overline{ss}

$$(\overline{ss})_{\text{renorm}} = \frac{1}{2} \left[Z_s (\overline{ss})_{\text{bare}} + Z_{ud} (\overline{uu} + \overline{dd})_{\text{bare}} + \frac{Z_1}{a^3} \right]$$

- potentially dangerous : $\bar{s}s \ll \bar{u}u + \bar{d}d$
- vanish for scalar, tensor in mass-independent scheme

$$Z_{ud} = Z_0 - Z_8, \quad \left(\overline{q}q\right)_{\text{renorm}} = Z_0 \left(\overline{q}q\right)_{\text{bare}}, \quad \left(\overline{q}\lambda^8 q\right)_{\text{renorm}} = Z_8 \left(\overline{q}\lambda^8 q\right)_{\text{bare}}$$

chiral symmetry greatly simplifies renormalization e.g. renormalization of \overline{ss}

$$(\overline{ss})_{\text{renorm}} = \frac{1}{2} \left[Z_s (\overline{ss})_{\text{bare}} + Z_{ud} (\overline{uu} + \overline{dd})_{\text{bare}} + \frac{Z_1}{a^3} \right]$$

- potentially dangerous : $\bar{s}s \ll \bar{u}u + \bar{d}d$
- vanish for scalar, tensor in mass-independent scheme

$$Z_{ud} = Z_0 - Z_8, \quad (\overline{q}q)_{\text{renorm}} = Z_0 (\overline{q}q)_{\text{bare}}, \quad (\overline{q}\lambda^8 q)_{\text{renorm}} = Z_8 (\overline{q}\lambda^8 q)_{\text{bare}}$$

mixing w/ 1/a³

- only for scalar, but disaster $1/a^3 \rightarrow \infty (a \rightarrow 0)$
- forbidden by chiral symmetry

chiral symmetry greatly simplifies renormalization e.g. renormalization of \overline{ss}

$$(\overline{ss})_{\text{renorm}} = \frac{1}{2} \left[Z_s (\overline{ss})_{\text{bare}} + Z_{ud} (\overline{uu} + \overline{dd})_{\text{bare}} + \frac{Z_1}{a^3} \right]$$

"operator mixing" w/ $\overline{u}u + \overline{d}d$

- potentially dangerous : $\bar{s}s \ll \bar{u}u + \bar{d}d$
- vanish for scalar, tensor in mass-independent scheme

$$Z_{ud} = Z_0 - Z_8, \quad (\overline{q}q)_{\text{renorm}} = Z_0 (\overline{q}q)_{\text{bare}}, \quad (\overline{q}\lambda^8 q)_{\text{renorm}} = Z_8 (\overline{q}\lambda^8 q)_{\text{bare}}$$

mixing w/ 1/a³

- only for scalar, but disaster $1/a^3 \rightarrow \infty (a \rightarrow 0)$
- forbidden by chiral symmetry

better control of renormalization

isoscalar charges, uu, dd, ss

analysis similar to g_A

3pt function \rightarrow charge

chiral extrapolation

• noisy disconnected diagrams \rightarrow larger uncertainties

• mild M_{π} dependence \Rightarrow poorly described by one-loop ChPT

$\pi N \sigma$ term

tension? ⇒ ChPT convergence ??? (BChPT, HBChPT, cBChPT)

strange quark content

pheno., Feynman-Hellmann suffer from large uncertainty

 $\sigma_{\pi N} \sim \sigma_s \sim 40 \text{Mev} \implies \text{dark matter cross section}$

 $\sigma_0 = \left\langle N \left| \overline{u}u + \overline{d}d - 2\overline{s}s \right| N \right\rangle$

strange quark content

pheno., Feynman-Hellmann suffer from large uncertainty

• $\sigma_{\pi N} \sim \sigma_s \sim 40$ Mev \Rightarrow dark matter cross section

strange quark content

pheno., Feynman-Hellmann suffer from large uncertainty

• $\sigma_{\pi N} \sim \sigma_s \sim 40$ Mev \Rightarrow dark matter cross section

axial charges

Doi-san's talk @ 2nd meeting in 2014

 χ QCD, first calculation of all contributions '13

- 25% from $\Sigma_q/2$
- 45% from *L_q*
- 30% from gluon

axial charges

Doi-san's talk @ 2nd meeting in 2014

 $\chi QCD,$ first calculation of all contributions '13

Systematic errors to be explored

- Dynamical quark effect
 - This is quenched calc.
- Uncertainty in (long) chiral extrapolation
 - m(pi) = 0.48--0.65 GeV in this calc
- Contamination from excited states
 - Sys error could be large (quite common in N on lat)
- Finite volume artifact, discretization artifact
 - m(pi) L >~ 4, a = 0.11fm
- Renormalization

 $1(10)^{\prime}$

- Perturbative vs. non-perturbative, etc.

% from $\Sigma_q/2$ % from L_q % from gluon

Doi-san's talk @ 2nd meeting in 2014

 χ QCD, first calculation of all contributions '13

Systematic errors to be explored

- Dynamical quark effect
 - This is quenched calc.

Uncertainty in (long) chiral extrapolation

- m(pi) = 0.48--0.65 GeV in this calc
- Contamination from excited states
 - Sys error could be large (quite common in N on lat)
- Finite volume artifact, discretization artifact
 - m(pi) L >~ 4, a = 0.11fm
- Renormalization

1(10)

Perturbative vs. non-perturbative, etc.

% from $\Sigma_q/2$ % from L_q % from gluon

axial charges

quark spins : reasonably consistent w/ χQCD and others

• ETM '17 : $J_g = 27(3)\%$ for $N_f = 2 \iff 28(8)\% N_f = 0 \chi QCD_{32}$

improvement by future experiments, EIC

summary + perspective

recent progress on nucleon charges from lattice QCD

- remarkable progress in recent years
 - realistic simulations \Rightarrow isovector g_A , g_S , g_T
 - improved techniques \Rightarrow isoscalar, up, down, strange charges

- JLQCD's study w/ exact chiral symmetry
 - simplified renormalization, direct comparison w/ ChPT
 - accuracy reasonable for new physics search $g_{S'}$, $g_{T'}$, $\sigma_{s'}$, $\delta_{u'}$, $\delta_{d'}$, ...
 - more precise calculation needs smaller a and M_{π}
 - more precise calculation of disconnected diagrams

summary + perspective

toward precision calculation

better control of discretization error and chiral extrapolation

Backup slides

nucleon correlation functions

$$\left\langle O_{N} \overline{q} \Gamma q \overline{O}_{N} \right\rangle$$

$$= \left\langle O_{N} \left| \left(\sum_{n} \frac{|n\rangle \langle n|}{2E_{n}} \right) \overline{q} \Gamma q \left(\sum_{m} \frac{|m\rangle \langle m|}{2E_{m}} \right) \overline{O}_{N} \right\rangle \exp\left[-E_{n} \left(\Delta t - \Delta t' \right) \right] \exp\left[-E_{m} \Delta t' \right]$$

$$= \frac{\left\langle O_{N} |N\rangle \langle N | \overline{O}_{N} \right\rangle}{4M_{N}^{2}} \left\langle N | \overline{q} \Gamma q | N \right\rangle \exp\left[-M_{N} \Delta t \right] + "N^{*} "\exp\left[-\Delta M \Delta t' \right]$$

$$\left\langle O_N \overline{O}_N \right\rangle$$

$$= \left\langle O_N \left| \left(\sum_n \frac{|n\rangle \langle n|}{2E_n} \right) \overline{O}_N \right\rangle \exp\left[-E_n \Delta t \right]$$

$$= \frac{\left\langle O_N | N \rangle \langle N | \overline{O}_N \right\rangle}{2M_N} \exp\left[-M_N \Delta t \right] + "N^* "\exp\left[-\Delta M \Delta t \right]$$

a precise calculation of gA

quark propagator

<u>"point-to-all" propagator</u> : standard Krylov method : CG, GMRES, … $D^{-1} : O(10^6) \times O(10^6)$ matrix $\Rightarrow Dd = e_{xend} \Rightarrow$ a column d

"all-to-all" propagator : modern, improvable stochastic method

low energy theorem for $\sigma_{\pi N}$

extension to more involved quantities

correction to theorem : small $\sim O(M_{\pi}^{4})$, no chiral log

$$F_{\pi}^{2}\overline{D}_{+}\left(\nu=0,t=2M_{\pi}^{2}\right) = \sigma\left(t=2M_{\pi}^{2}\right) + \Delta_{R} = \sigma\left(0\right) + \Delta_{\sigma} + \Delta_{R}$$

$$v = \left(s - M_{N}^{2} + t/2 - M_{\pi}^{2}\right)$$
correction to scalar FF : BChPTs

isoscalar πN scattering amplitude ("PS Born term" subtracted)

$$T_{\pi N}^{ba} = \overline{u} \left(p' \right) \left[\delta^{ba} \left\{ A^{+} \left(s, t \right) + q B^{+} \left(s, t \right) \right\} + i \varepsilon^{bac} \tau^{c} \left\{ A^{-} \left(s, t \right) + q B^{-} \left(s, t \right) \right\} \right] u \left(p \right) \\ \overline{D}^{+} \left(0, 2M_{\pi}^{2} \right) = A^{+} \left(M_{N}^{2}, 2M_{\pi}^{2} \right) - \frac{g_{\pi N}^{2}}{M_{N}}$$

but @ unphysical Cheng-Dashen point v=0, $s=M_N^2$, $t=2M_\pi^2$ \Rightarrow dispersive analysis

dark matter cross section

Giedt et al., '09, also Ellis '08-'09

conventional analysis determine "unknown" σ_s from $\sigma_{\pi N}$, σ_0 $\sigma_0 = \langle N | \overline{u}u + \overline{d}d - 2\overline{s}s | N \rangle$ $\sigma_s = \frac{ms}{2m_{ud}} (\sigma_{\pi N} - \sigma_0)$

w/ lattice QCD σ_s

 $\sigma_{\pi N} \sim \sigma_s \sim 40$ Mev \Rightarrow better estimate of DM cross section