RIBF seminar 2018/01/30

Transient brightening of Jupiter's aurora observed by the Hisaki satellite and Hubble Space Telescope during approach phase of the Juno spacecraft

Tomoki Kimura (Tamagawa Lab.)

About myself

- Name: Tomoki KIMURA
- Lab: Tamagawa lab.
- Expertise: space plasma, magnetosphere, gas giants, icy moons
- Missions
 - JAXA planetary space telescope Hisaki
 - ESA/JAXA Icy Moon Exploration JUICE
 - Associate of Juno, Cassini, & Galileo

Our first principle

$$\nabla \cdot \boldsymbol{E} = \frac{\rho}{\epsilon_0}$$

$$\nabla \cdot \boldsymbol{B} = 0$$

$$\nabla \times \boldsymbol{E} = -\frac{\partial B}{\partial t}$$

$$\nabla \times \boldsymbol{B} = \mu_0 \left(\boldsymbol{j} + \epsilon_0 \frac{\partial \boldsymbol{E}}{\partial t} \right)$$

$$\frac{\partial f_s}{\partial t} + \mathbf{v} \cdot \nabla f_s + \frac{q_s}{m_s} \left(\mathbf{E} + \mathbf{v} \times \mathbf{B} \right) \cdot \nabla_{\mathbf{v}} f_s = 0$$

$$f_s \left(x, y, z, v_x, v_y, v_z \right)$$

Contents

- 1. Basic background
- 2. Dynamics of Jupiter's magnetosphere
- 3. Recent paper: Hisaki-HST-Juno collaboration
- 4. Future plans

Basic background

My final goal

Universally understand how high energy space plasma works at magnetized rotating bodies

High energy plasma at Saturn & Jupiter works as chemical/physical energy source at 'habitable' moons

Steady state

Force balance in equatorial magnetosphere

 $0 \sim J_{0\phi} B_{0z} - \frac{\partial p_0}{\partial r} + \rho_0 \omega^2 r$

 $\odot_{B_{\phi}}$.

⊗^Bφ~

 $\dot{\rho}\mathbf{\Omega} \times \mathbf{r} + 2\rho\mathbf{\Omega} \times \dot{\mathbf{r}} + \rho\mathbf{\Omega} \times (\mathbf{\Omega} \times \mathbf{r}) + \nabla \cdot \mathbf{P} = \mathbf{j} \times \mathbf{B}_{\mathbf{0}},$

approximately

Cowley and Bunce, 01

 $\overline{\Omega}_{\mathrm{I}}^*$

Io

Dynamics of Jupiter's magnetosphere

Interchange instability

Electromagnetic coupling with planet

Big questions

How mass, momentum, and energy are dynamically transferred in rotating magnetosphere

- Transfer from planet/moon to m'sphere is dominant.
- How about from m'sphere to planet?

Especially in radial direction?

How some plasmas are accelerated up to 50 MeV by electromagnetic coupling btw planet and m'sphere?

Transient brightening of Jupiter's aurora observed by the Hisaki satellite and Hubble Space Telescope during approach phase of the Juno spacecraft

Tomoki Kimura (RIKEN),

Jonathan D Nichols (Leicester U), Rebecca Gray, Sarah V Badman (Lancaster U), Chihiro Tao (NICT), Go Murakami (JAXA), Atsushi Yamazaki (JAXA), Fuminori Tsuchiya (Tohoku U), Kazuo Yoshioka (U of Tokyo), George B Clark (APL), Denis C Grodent (U of Liège), Hajime Kita (Tohoku U), I. Yoshikawa (U of Tokyo) Masaki Fujimoto (JAXA), and Hisaki Science Team

Jupiter observing campaign 2016-present

Hisaki satellite mission

Earth-orbiting Extreme Ultraviolet (EUV) spectroscopic mission
First mission of the ISAS/JAXA Small scientific satellite series
Observation targets : Mercury, Venus, Mars, Jupiter, and Saturn

Major specifications

- Launch date : 14th Sep 2013
- Weight: 330kg
- Size:1m×1m×4m
- <u>Orbit:950km×1150km (LEO)</u>
- Inclination: 31 deg
- Mission life :>1 year
- Pointing accuracy : ±2 arcmin (<u>improved to ±5arc-sec</u> <u>by using a guide camera FOV</u>)

EUV spectrometer "EXCEED" onboard Hisaki

Led by ISAS/JAXA, Univ. of Tokyo, and Tohoku Univ.

Dataset

EUV spectrometer "EXCEED"

Wavelength range	60 – 145 nm
Spatial resolution (for Jupiter mode)	17" (~1Rj around opposition)
Field of view	360″ (~20Rj)
Spectral resolution (FWHM)	~1.0 nm (140" slit)
Effective area	2cm ² @100nm

Jupiter observation

dumbbell-shaped slit placed at northern
 dumbbell-shaped slit
 pole
 140" 360"

Internally-driven transient aurora

Interpretation: energetic event

Magnetic reconnection

- Temporal and spatial evolutions of the transient aurora and energetic events were not resolved by previous observations
- 2. Because of lack of continuous monitoring that spans duration of transient aurora

Purpose

- Investigate temporal sequence of transient aurora based on continuous monitoring of aurora with Hisaki & HST
- 2. Discuss spatio-temporal evolution of energetic event

Observation result

Kimura+17

- 1. Aurora at higher latitude brighten
- 2. Aurora at lower latitude followed

What auroral latitude means?

Higher latitudes map to magnetospheric regions far from Jupiter

Lower latitudes map to magnetospheric regions close to Jupiter

What auroral latitude means?

Accelerated ions and electrons originating magnetosphere precipitate into Jupiter's atmosphere along magnetic field line

FUTURE PLANS

In-situ measurements at pole

Future: impact to icy moons

- □ JUICE: 2030-
- Europa Clipper: mid 2020s?
- Explorers will flyby Europa and orbit Ganymede
- Comprehensive measurement of surface spectra, magnetic field, atmosphere, and plasma

