
RNC Lecture, (2010) Oct. 8

# **Semiconductor Detectors**

#### Shunji Nishimura



**Silicon Detector** 



**Germanium Detector** 

# **Outline of this Lecture**

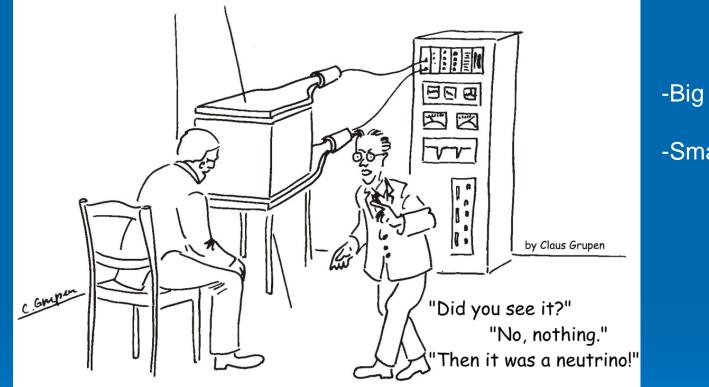
#### Introduction

- Detectors General Requirements
- Why use semiconductor detectors?

#### Basic Principles

- P-type, N-type
- Depletion layer
- Type of detectors

#### Performance


- Energy Measurement
- Position Measurement
- Timing Measurement

### > Electronics





## **Design of Experiments**



-Big Project -Small Project

Experimental setup depends on what you want to measure for your physics

### Detectors General Requirements [Particle Identification]

- what kind of particles?!

Hadrons proton, neutron, d, t, 3He, ... pion, kaon, ...

Photon Gamma-ray (γ)

Lepton

Electron (β), Muon (μ), Tau(τ) Neutrino (ν)

- momentum, direction, time, etc..

**Kinematics** 

# **Requirements for detectors**

#### Energy measurement

- Energy loss (dE)
- Total energy (E)
- Pulse shape

#### Position measurement

- (X, Y, Z)  $\rightarrow$  Tracking
- $B\rho \rightarrow Momentum (p)$

### > Timing measurement

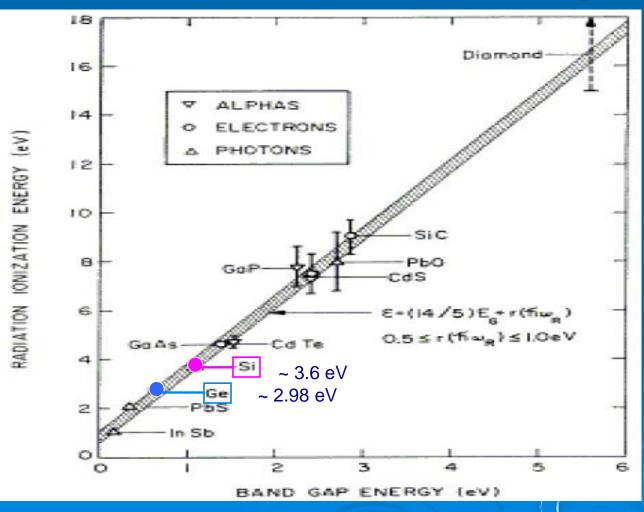
- Timing (velocity β)
- High counting rate (dN/dt)

### Count measurement

- Sensitivity to particle (ε)
- Insensitive to background (S/N)
- Radiation hardness

#### There are many types of detectors.

- Scintillation detector (Tamagawa-san)
- Gas detector
- Semiconductor detector


 $\rightarrow$  Is there a perfect detector ?!

What is the advantage of semiconductor detector?

# **Characteristics of Semiconductor**

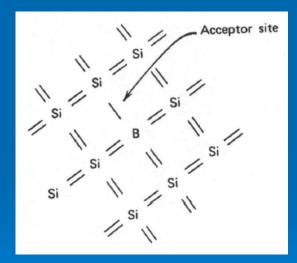
| <ul> <li>Low ionization energy         <ul> <li>good signal</li> </ul> </li> <li>Long mean free path         <ul> <li>good charge collection efficiency</li> </ul> </li> </ul> | Detector      | lonization<br>energy<br>I (eV) | Energy<br>resolution<br>@ 5MeV<br>2.35/\(5x10 <sup>6</sup> /I) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------|----------------------------------------------------------------|
| <ul> <li>High mobility</li> <li>fast charge collection</li> </ul>                                                                                                              | Scintillation | 100 ~ 500                      | 1.1 ~ 2.4 %                                                    |
| Si Lower Z = 14                                                                                                                                                                |               | 00                             |                                                                |
| <ul> <li>low multiple scattering</li> <li>Little cooling</li> </ul>                                                                                                            | Gas           | 30                             | 0.6 %                                                          |
| <ul> <li>Ge Higher Z = 32</li> <li>higher stopping power</li> </ul>                                                                                                            | Semiconductor | 3                              | 0.2%                                                           |
| <ul> <li>Cooling is required.</li> </ul>                                                                                                                                       |               | 6                              | E                                                              |

### Energy required for creation of an electron-hole pair

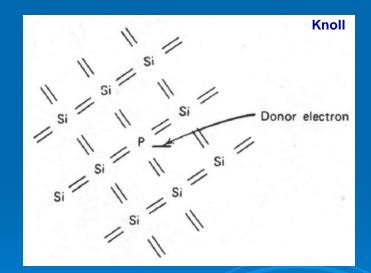


Sand

Silicon: The basic ingredients are ridiculously cheap

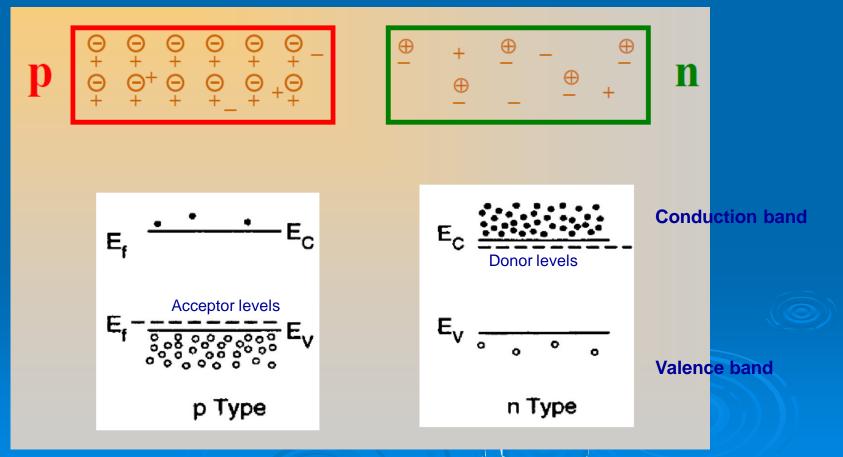

C.A.Klein, J. Applied Physics 38 (1968) 2029.

# **Basic Principles**




## Basic Principles [ To dope the silicon with impurities ]

#### Boron doping ( p-type ) holes are majority carriers




### Phosphorus doping (n-type) electrons are majority carriers



### **Basic Principles**

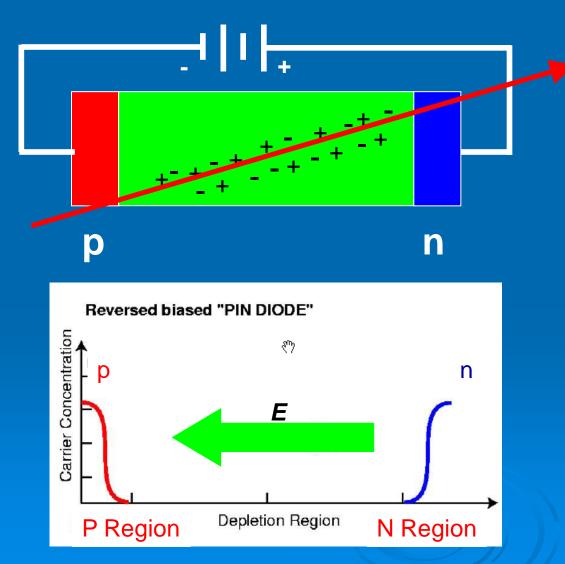
### Now we can construct a p-n junction



P. Collins (CERN)

# **Basic Principles**




When brought together to form a junction, the majority diffuse carriers across the junction. The migration leaves a region of net charge of opposite sign on each side, called the space-charge region or depletion region. The electric field set up in the region prevents further migration of carriers.

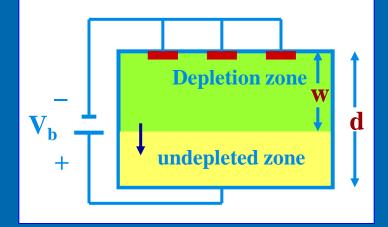
### Dopant Space charge density Carrier density Electric field Electric potential

P. Collins (CERN)

Now for the magic part !

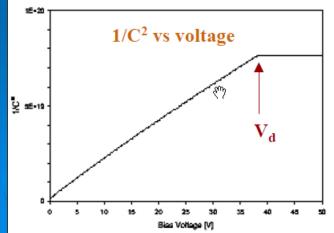
### Basic Principles [Semiconductor structure]




- Use ionization signal left behind by charged particle passage.
- Ionization produces electron(e)-ion(h) pairs, use electric field to drift the e and h to the oppositely charged electrodes.
- Si needs 3.6eV to produce one e-h pair.

## **Depletion zone**

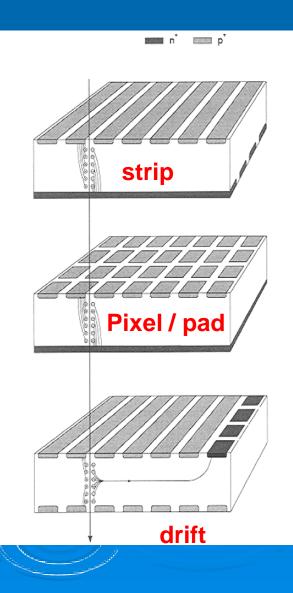
### Depletion zone


 $w = \sqrt{2\epsilon\rho\mu V_b}$ 

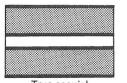
where  $\rho = 1/q\mu N$  for doped materiel and N is the doping concentration (q is always the charge of the electron)



The voltage needed to completely deplete a device of thickness d is called the depletion voltage, V<sub>d</sub>


 $V_d = d^2 / (2\epsilon\rho\mu)$ 

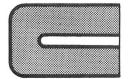



# **Types of Silicon detectors**

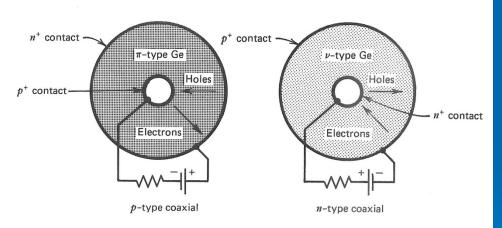
#### Strip devices

- High precision
- Large active area
- Single-sided or Double-sided
- > Pixel devices
  - True 2-D measurement
  - Small areas, but high track density
- Pad devices
  - (Big pixels / wide strips)
    - Pre-shower and calorimeters
- Drift devices




# **Types of Ge-detectors**





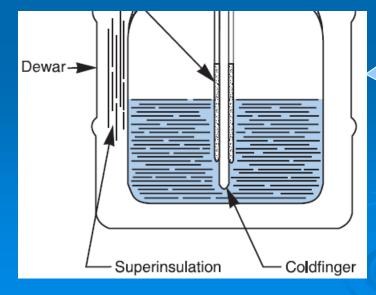

Closed-ended coaxial

represents electrical contact surface



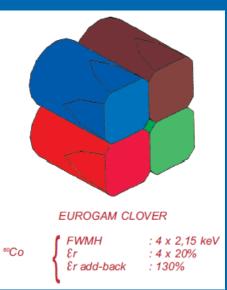
Closed-ended coaxial (bulletized)




**Figure 12.3** At the top are shown the three common shapes of large-volume coaxial detectors. Each represents a cross-sectional view through the axis of a cylindrical crystal. The outer electrode is extended over the flat front (left) surface in both closed-ended cases. Cross sections perpendicular to the cylindrical axis of the crystal are shown at the bottom. The HPGe material may be either high-purity p or n type. The corresponding electrode configurations are shown for each type.



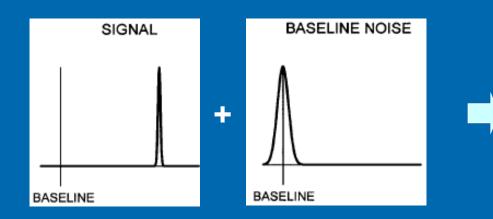
#### Strip Ge detector

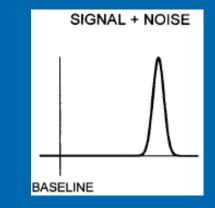

### **Clover Detector**

#### Liquid Nitrogen for cooling

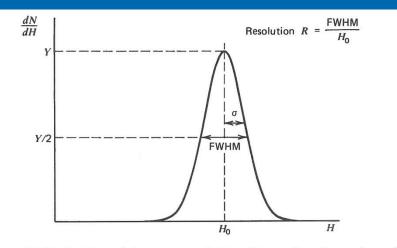





#### 4 crystals

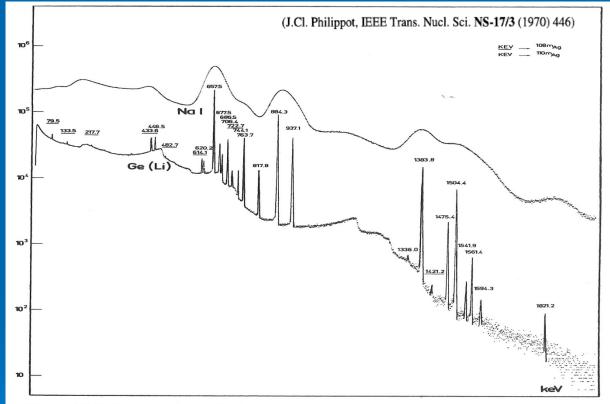



### Performance I


# **Energy Resolution**

# **Energy Resolution**

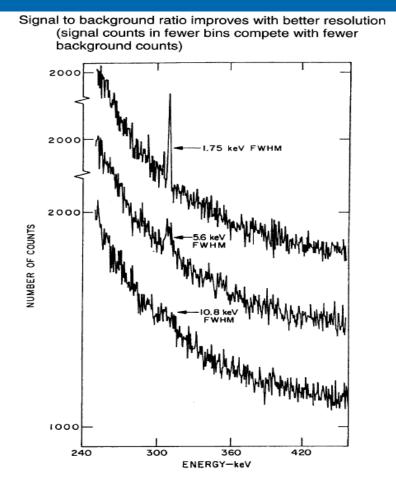





If Signal Variance << Baseline Variance → Electronics (baseline) noise critical for resolution



**Figure 4.5** Definition of detector resolution. For peaks whose shape is Gaussian with standard deviation  $\sigma$ , the FWHM is given by 2.35 $\sigma$ .


### Energy Resolution : Nal(TI) vs Ge



**Figure 12.7** Comparative pulse height spectra recorded using a sodium iodide scintillator and a Ge(Li) detector. The source was gamma radiation from the decay of <sup>108m</sup>Ag and <sup>110m</sup>Ag. Energies of peaks are labeled in keV. (From Philippot.<sup>13</sup>)

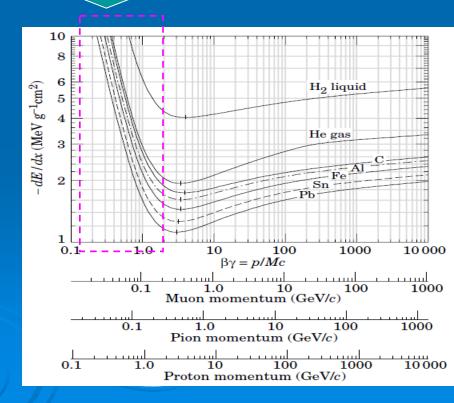
#### Semiconductor detector Excellent detector for energy measurement !!

### Energy Resolution [Signal to Background Ratio (S/N)]

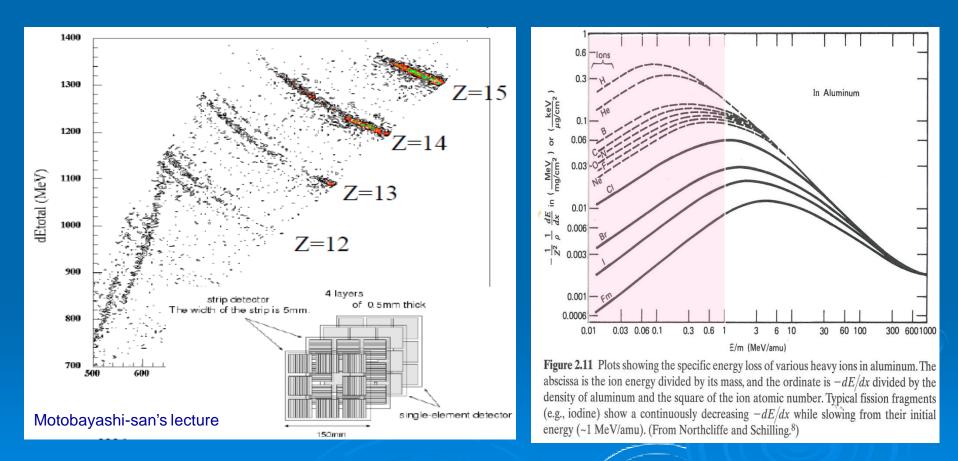


G.A. Armantrout, et al., IEEE Trans. Nucl. Sci. NS-19/1 (1972) 107

# → Good Energy Resolution → Higher Statistics


We can extract - precise peak position, - and find NEW Peaks!!

### Particle Identification [Use Difference of Stopping Power]


$$p = m_0 \beta \gamma$$
$$\frac{dE}{dx} \propto \frac{1}{\beta^2} \ln(\beta^2 \gamma^2)$$

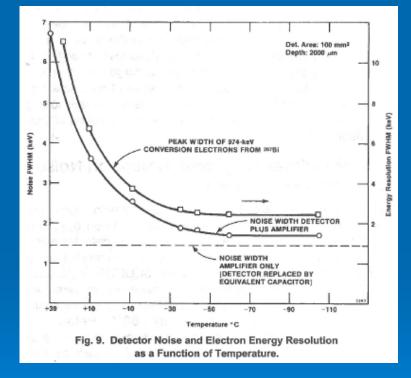
Knowing p and  $\beta$  gives m

For very low momenta, we can exploit the bethe-bloch formula for particle identification



### Particle Identification [ dE-E Correlation]




#### Multi-layer detectors enable us to identify the particles!



 $\bigcirc$ 

### **Energy Resolution :**

#### [Temperature Dependence]



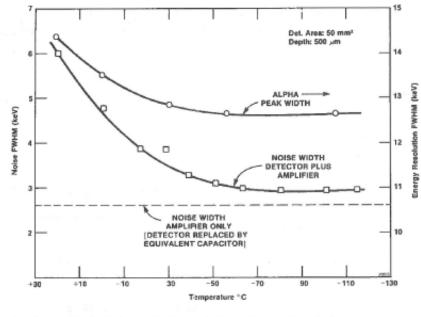



Fig. 8. Detector Noise and Alpha Energy Resolution as a Function of Temperature.

#### Semiconductor Detectors prefer COOLING

### Performance II

### **Position Measurement**

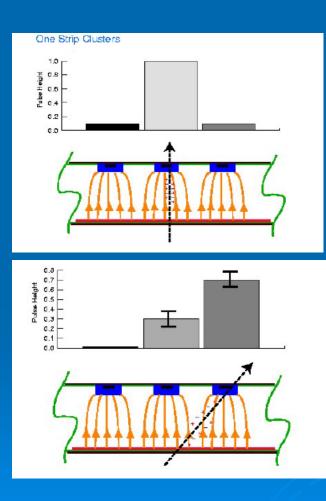


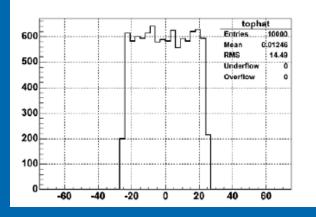
Búbble chamber (CERN)

### **Position Measurement**

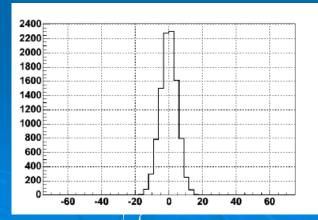
Table 28.1: Typical resolutions and deadtimes of common detectors. Revised September 2003 by R. Kadel (LBNL).

| Detector Type               | Accuracy (rms)             | Resolution<br>Time    | Dead<br>Time      |
|-----------------------------|----------------------------|-----------------------|-------------------|
| Bubble chamber              | $10150 \ \mu\text{m}$      | $1 \mathrm{ms}$       | $50 \text{ ms}^a$ |
| Streamer chamber            | $300 \ \mu m$              | $2 \ \mu s$           | $100 \mathrm{ms}$ |
| Proportional chamber        | $50-300 \ \mu m^{b,c,d}$   | 2 ns                  | 200  ns           |
| Drift chamber               | $50-300 \ \mu m$           | $2 \text{ ns}^e$      | 100  ns           |
| Scintillator                |                            | $100 \text{ ps/n}^f$  | 10  ns            |
| Emulsion                    | $1 \ \mu \mathrm{m}$       |                       |                   |
| Liquid Argon Drift [7]      | $\sim 175 - 450 \ \mu m$   | $\sim 200 \text{ ns}$ | $\sim 2 \ \mu s$  |
| Gas Micro Strip [8]         | $30-40 \ \mu m$            | < 10  ns              |                   |
| Resistive Plate chamber [9] | $\lesssim 10 \ \mu { m m}$ | 1-2 ns                | —                 |
| Silicon strip               | $pitch/(3 to 7)^g$         | h                     | h                 |
| Silicon pixel               | $2 \ \mu m^i$              | h                     | h                 |


| <sup>a</sup> Multiple pulsing time.                                       |
|---------------------------------------------------------------------------|
| <sup>b</sup> 300 $\mu$ m is for 1 mm pitch.                               |
| $^c$ Delay line cathode readout can give ±150 $\mu {\rm m}$ parallel to   |
| anode wire.                                                               |
| <sup>d</sup> wirespacing/ $\sqrt{12}$ .                                   |
| <sup>e</sup> For two chambers.                                            |
| f n = index of refraction.                                                |
| $^{g}$ The highest resolution ("7") is obtained for small-pitch           |
| detectors ( $\leq 25 \ \mu m$ ) with pulse-height-weighted center         |
| finding.                                                                  |
| <sup>h</sup> Limited by the readout electronics [10]. (Time resolution of |
| $\leq 25$ ns is planned for the ATLAS SCT.)                               |

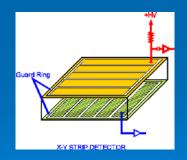

<sup>i</sup> Analog readout of 34 μm pitch, monolithic pixel detectors.

#### **Silicon Detectors**


- very good position resolution.
- works under high magnetic field.
- high rates and triggering.

### **Position Measurement**






 $\sigma = \text{pitch}/\sqrt{12}$ 



### **Position Sensitive Ge detectors**







Ge detector array (GRAPE) CNS, Univ. of Tokyo



### Performance III

# **Timing Measurement**

Silicon detector

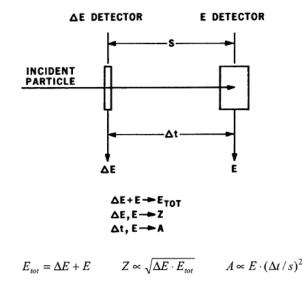
- Electrons ~10ns/300um
- Holes ~ 25ns/300um

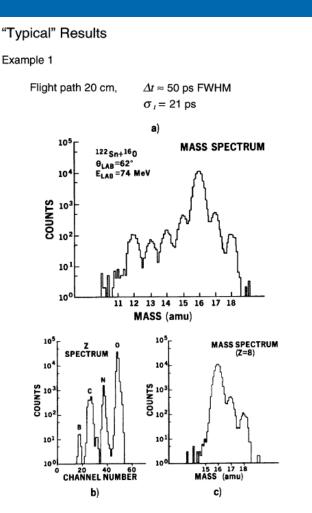


# **Timing Measurement**

#### 2. Nuclear Mass Spectroscopy by Time-of-Flight

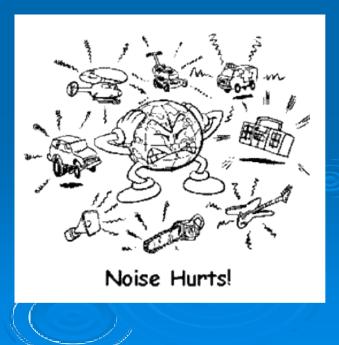
#### Two silicon detectors


First detector thin, so that particle passes through it (transmission detector)


 $\Rightarrow$  differential energy loss  $\Delta E$ 

Second detector thick enough to stop particle

 $\Rightarrow$  Residual energy E

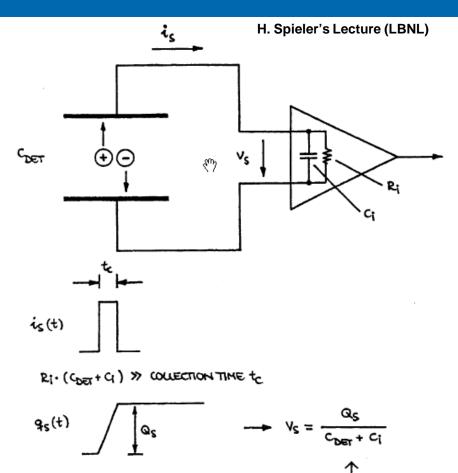

Measure time-of-flight  $\Delta t$  between the two detectors





(H. Spieler et al., Z. Phys. A278 (1976) 241)

### **Electronics**




### Electronics

Noise is a big issue for Silicon/Ge detectors. At 22000 e- for a 300 um thick silicon sensor, the signal is relatively small. Signal losses can easily occur depending on electronics, stray capacitances, coupling capacitor, frequency etc.

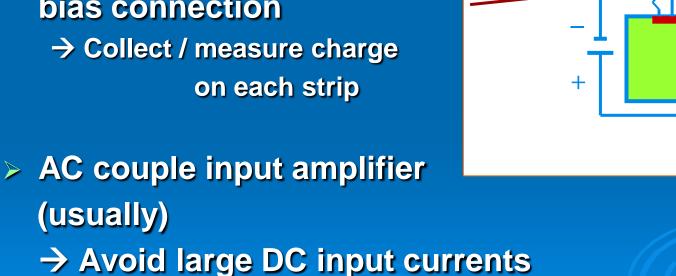
> Improve energy resolution> Allow a low detection threshold

### Electronics [Signal Integration on Input Capacitance]



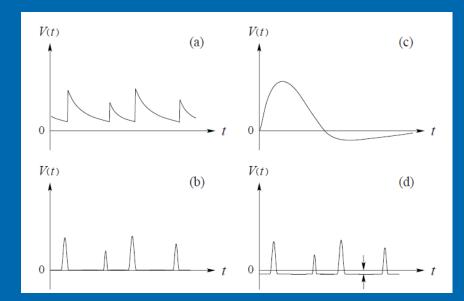
System response depends on detector capacitance !

Energy Deposit ∝ Charge Qd However,

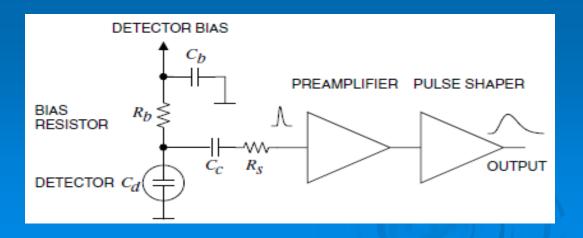

☆ Detector capacitance C<sub>DET</sub> may vary within a system or change with bias voltage.
 ☆ Variation of charge collection in time T<sub>c</sub>

Make system whose gain  $(dV_{out}/dQ_s)$  is independent of detector capacitance.

#### Charge sensitive preamp !


# **Charge Collection**

 Isolation of each strip using high impedance bias connection
 Collect / measure charge on each strip




# Signals

- (a) Output of preamp
- (b) Output of shaping amp
- (c) Undershoot
- (d) Base-line shift



The output of preamplifier : rapidly rising step, followed by a slow exponential decay. Amplitude of the step = energy of the detected radiation Exponential decay time = feedback resistor in parallel with the feedback capacitor.



# **Shaping Time**

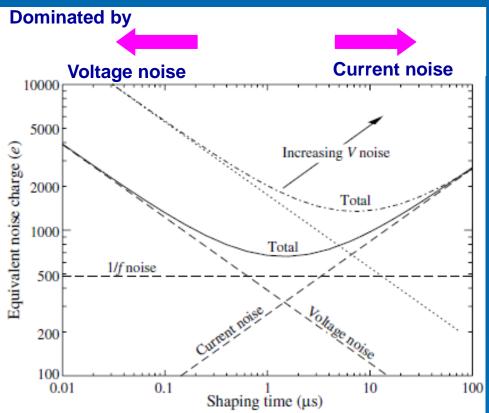
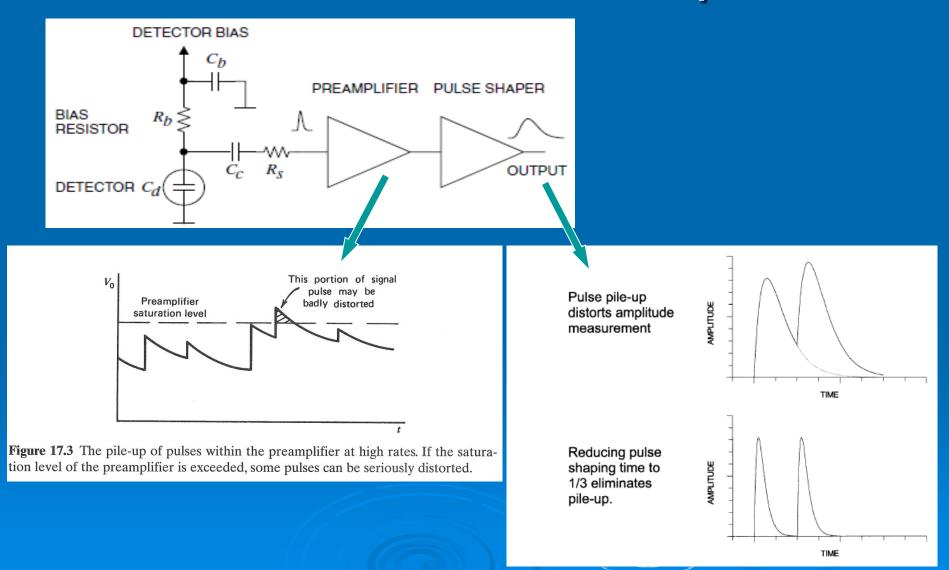
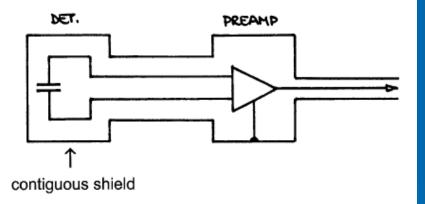
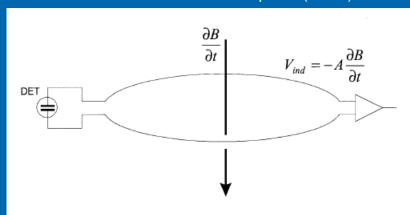




Figure 28.20: Equivalent noise charge vs shaping time. Changing the voltage or current noise contribution shifts the noise minimum. Increased voltage noise is shown as an example.

### Optimization is required in shaping time, ~ 1 $\mu$ s


#### **PRL667**


### **Electronics : Pile-up**



# Shielding and Loops

#### a) Shielding





H. Spieler (LBNL)

Clearly, the area A enclosed by any loops should be minimized.

Accomplished by routing signal line and return as a closely spaced pair.

Better yet is a twisted pair, where the voltages induced in successive twists cancel.

Problems occur when alternating detector electrodes are read out at opposite ends – often done because of mechanical constraints.



### How to use them

# Operation

#### **DELICATE** Devices

#### > HV should be increased SLOWLY..

- Check its maximum HV value and Polarity (+/-)
- Check the current in HV module and its signal carefully.
- If something is wrong, stop the operation and investigate the reason.

#### Shock / vibration may destroy the detector.

• Careful handling.

#### Silicon detectors

- Only the support frame can be touched.
- Silicon detector hates moisture.
- Sensitive to photons (light) ... Operate in dark place.

#### Ge-detector

Liquid nitrogen is required to cool the detector down.

## Summary

- Semiconductor detectors based on the simple principle of the p-n junction.
- Si is typically used for charged particle & X-ray
- > Ge is used for  $\gamma$  ray spectroscopy.

Friday afternoon, Practical training using Ge detector (by Watanabe-san)

I wish you all the best for enjoying your stay in JAPAN !!

### References

#### > SLAC Lecture

- <u>http://www-group.slac.stanford.edu/sluo/lectures/Detector-</u> <u>Lectures.html</u>
- Silicon Detector by Paula Collins
  - http://lhcb-doc.web.cern.ch/lhcbdoc/presentations/lectures/CollinsItacuruca03-2nd.pdf
- REVIEW OF PARTICLE PHYSICS, Phys. Letters B 667 (2008).
- EG&G ORTEC, Modular Pulse-Processing Electronics and Semiconductor Radiation Detectors.
- GLENN F. KNOLL, Radiation Detection and Measurement.





