EIC detector considerationsor: What do we need where

4/15/2018 Pre-DIS EIC workshop, Kobe

Ralf Seidl (RIKEN/RBRC)

Several slides taken from EICUG Detector discussion meeting: https://indico.bnl.gov/conferenceDisplay.py?confld=3737 Also: excellent information about kinematics etc can be found at: https://wiki.bnl.gov/eic/index.php/DIS_Kinematics

Outline

- Electron energy measurements → EM calorimetry
- Electon PID and Tracking
- SIDIS kinematics
 - Hadron momentum and energy measurements \rightarrow Hcal + tracking

backward

p/A

- Hadron PID
- Exclusive/diffractive reactions
 - Proton detection needs \rightarrow roman pots, etc
 - DVCS/HEMP needs
- Other measurements/needs
- Different detector proposals
- Outlook

2

forward

e

DIS Kinematics

$$Q^{2} = -q^{2}$$
$$= -(k - k)$$
$$x_{B} = \frac{Q^{2}}{2Pq}$$
$$k^{+} = xP^{+}$$
$$y = \frac{qP}{kP}$$

$$V^2 = (P+q)^2$$

- Squared Momentum transfer of photon/Z (*Resolution*)
- Bjorken scaling variable, at high Q² momentum fraction of quark
- Inelasticity (sometimes called depolarization factor)
- Mass of hadronic final state

Quark distribution functions: quark q in nucleon

•Hard scales: Q²>>1 GeV² otherwise photoproduction

2018/04/15

R.Seidl: EIC detector considerations

DIS cuts: Q² >1 GeV², 0.01<y<0.95, W²>10GeV²

- Low-x and low Q²:
 - Scattered lepton mostly in lepton-going direction (η<0)
- Higher-x and high Q²:
 - Scattered lepton more central and eventually in hadron-going direction (η>0)

DIS needs II: Energy ranges

DIS cuts

- Scattered lepton energies mostly bound by lepton energy
- At high Q² the electron starts moving into the hadron direction
- ...and can have higher momenta

Detector requirements DIS

Requirement

- Electron identification for
 - η<0.5 : E_e < 20GeV
 - η>0.5 : E_e up to 50 GeV
 - Mostly E/h separation needed
- Good tracking everywhere important for precise DIS kinematics determination

Detector option

- Good EM Calorimeter in backward/central region
- Likely additional e/hadron separation via preshower, Postshower/HCAL in main regions
- Central tracking via TPC(outer)+Silicon(inner)
- Forward/backward tracking augmented by Silicon/GEM/thinGapChamber

CC DIS requirements + very high Q²

- Need to "find" missing electron track
- Kinematics using hadronic final state (Jacquet-Blondel method)
- Requires hadronic calorimetry and tracking in forward region

2018/04/15

Photoproduction

R.Seidl: EIC detector consideration

Photoproduction: Q² <1 GeV²

p/A

- Essentially all electrons go into very backward region (η<-4)
- Energy close to e beam energy
- Needs close coordination with accelerator group

RIKEK

2018/04/15

SIDIS Kinematics

2018/04/15

- Squared Momentum transfer of photon/Z
- Bjorken scaling variable, at high Q² momentum fraction of quark
- Inelasticity (sometimes called depolarization factor)
- Mass of hadronic final state
- Fractional hadron momentum

•Hard scales: Q²>>1 GeV² otherwise photoproduction

Hadron kinematics

DIS cuts

- Hadron energy in forward direction follows hadron beam energy, no dependence on electron beam energy → Energies of up to 100 GeV
- Central rapidity sees hadrons of a few GeV
- Backward hadron energies follow electron beam energies → up to 10-20 GeV

More on hadron kinematics

2018/04/15

- Again, in higher x/Q^2 events hadrons are in forward direction
- Lower x/Q^2 have hadrons more into the central directions
- For fragmentation functions highest high-z access at slightly forward direction (and higher energies)

Detector requirements SIDIS

Requirements

- Hadron identification for
 - $-3 < \eta < 1 : E_h < 5 10 GeV$
 - $\eta > 1$: E_h up to 100 GeV
- Good tracking everywhere: important for determination of z, $P_{h\perp}$ and azimuthal angle and PID
- Additional hadron energy determination required at least forward

Detector option

 Central PID (|η|<1): DIRC or fastTOF

p/A

- Slightly forward(η<2) /backward (η<-1) PID: same or Aerogel based RICH
- Forward (η>1) PID: gas RICH
- Forward (η>2) Hadronic Calorimeter

Exclusive Kinematics

2018/04/15

$$= \Delta^2$$
$$= (p - p')^2$$

A 2

t

$$=$$
 $(\mathbf{p} - \mathbf{p}')^2$

- Total momentum transfer to the proton
- 3-momentum transfer to proton (transverse part FT of impact parameter)
- Skewedness parameter

Compton Form Factors are experimentally accessible

Generalized parton distributions

ξ

R.Seidl: EIC detector considerations

Forward (Diffractive) protons

- Very forward protons at close to the Beam energy
- Rapidities only determined by the hadron beam energies
- Requires Roman pots as close to the beamline as possible
- Closely related kinematics for neutrons (ZDCs)
- Needs close coordination with Accelerator design

Other Exclusive Reactions

Find large rapidity gap

 → nearly hermetic
 detector (large
 acceptance)

- DVCS photon or exclusive hadron:
 - Mostly in leptongoing direction (bound by lepton energy)
 - Hadron going photons follow hadron energy

Cuts: Q²>1 GeV, 0.01<y<0.85,

Detector requirements exclusive

Requirements

- Proton detection and momentum reconstruction at very forward rapidities (η>>5)
- Neutron detection and momentum reconstruction at very forward rapidities (η>>5)
- Rapidity gap detection
- DVCS photon detection and reconstruction

Detector option

- Roman pots close to the hadron beamline
- Zero Degree Calorimeter after outgoing hadron beam is bent away

p/A

- Hermetic detector (at least |η|<4, better more), forward HCAL
- High granularity EMCal in Backward region, more backward coverage?

The general strawman detector

The actual contenders (for now)

Detector based on BaBar magnet (ePHENIX) (\$\$) or STAR(eSTAR) (\$)

BNL dedicated detector (BEAST) (\$\$\$)

Jlab dedicated detector (\$\$\$)

Argonne (TOPside): silicon to the max(\$\$\$)

2018/04/15

R.Seidl: EIC detector considerations

18

RIKE

Tracking

Kisselev

Tracker

EIC R&D Tracking Consortium meeting in Temple (May'17)

Hand-drawn consensus EIC detector design

- High redundancy
- Material budget ~5% rad.length or so
- Pretty much "basic" components

→H1 : 0.6%*P_t + 1.5%
 →ZEUS : 0.5%*P_t + 1.5%

TPC

Kisselev

- ~2m long; gas volume radius [225..775] mm
- 1.2% X/X₀ IFC, 4.0% X/X₀ OFC; 15.0% X/X₀ end-caps
- assume 5 mm long GEM pads and ~250 μm single point {rφ} resolution for the max. drift distance of ~1m
- A gas mixture like T2K at ~250 V/cm (very small transverse dispersion in 3T field) will do the job

Pretty much in sync with sPHENIX prototype

These days this is seen as a medium size and medium resolution TPC

"Purity" in (x,Q²) kinematic bins

- → a trivial observation: tracker momentum resolution rapidly degrades at backward rapidities; this clearly affects {x,Q²} reconstruction quality
- A possible solution: use e/m calorimeter in addition to tracking
 - ~2%/ \sqrt{E} energy resolution (and ~0 constant term) for η < -2 (PWO crystals)
 - ~7%/ \sqrt{E} energy resolution for -2 < η < 1 (tungsten powder scint. fiber sampling towers)
- Consider "bremsstrahlung off " case here for simplicity

High-resolution crystal calorimeter at very backward rapidities should definitely help to increase available **y** range

PID requirements

 Electron-hadron ID important at lower rapidities, hadrons dominating at low energies

- Hadron ID needed below 5-10 GeV for central detector
- Hadron Id up to 60 GeV in forward direction

High Q² electrons far below hadron yields (though topologically separated)

2018/04/15

R.Seidl: EIC detector considerations

Technical challenges: PID

Furletova

** Here for electron/hadron separation only from Cherenkov detectors are shown. Main e/h rejection is done by calorimeters.

Yulia Furletova

23

RIKEN

Electron ID

mostly ok via

E/p separation

Backward/cent

ral hadron ID

the hadron

energies

Forward

hadron ID

requires gas RICH \rightarrow long,

low light yield,

wavelength

covers most of

Technical challenges: Envelope

Electron Ion Collider - eRHIC

Montag

General Purpose IR Design

+/- 4.5m machine-element free space around IP
Roman Pots for low-p_t detection

- Size of interaction region is limited by accelerator elements needed for high luminosity
- Eg eRHIC main detector envelope 4.5m
- Roman pots, ZDCs and very forward electron tracking need to be merged with Accelerator design

Coordinated R&D ongoing

Hardware requirements common due to the kinematics, many R&D consortia working together to find the best hardware solutions:

https://wiki.bnl.gov/conferences/index.php/EIC_R%25D

- eRD1 Title: EIC Calorimeter Development
- eRD₃ **Title:** Design and assembly of fast and lightweight forward tracking prototype systems for an EIC
- eRD6 Title: Tracking & PID detector R&D towards an EIC detector
- eRD14 **Title:** PID Consortium for an integrated program for Particle Identification (PID) at a future Electron-Ion Collider
- eRD15 Title: R&D for a Compton Electron Detector
- eRD16 Title: Forward/Backward Tracking at EIC using MAPS Detectors
- eRD17 **Title:** BeAGLE: A Tool to Refine Detector Requirements for eA Collisions
- eRD18 Title: Precision Central Silicon Tracking & Vertexing for the EIC
- eRD20 Title: Developing Simulation and Analysis Tools for the EIC
- eRD21 Title: EIC Background Studies and the Impact on the IR and Detector
- eRD22 Title: GEM based Transition radiation detector and tracker

Summary

- The general detector considerations are very similar:
 - Good tracking everywhere for DIS kinematics, electron ID, hadron kinematics
 - EMCALs in all rapidities for electron energy and ID
 - Various hadron ID detectors necessary with increasingly larger momentum range with increasing rapidity
 - Hadronic calorimetry at least forward for hadron energy determination, hadronic determination of DIS and diffractive events
 - Roman pots and ZDCs for Diffractive events (accelerator coordination)
 - Photoproduction requires special electron tracking(accelerator coordination)
 - Close coordination with accelerator design in terms of envelopes, etc

