Astroparticle physics and EIC - combining the largest and the smallest scales in the Universe

> Joanna Kiryluk Stony Brook University Pre-DIS2018 workshop

> > 15 April 2018, Kobe, Japan

Astroparticle physics and EIC - combining the largest and the smallest scales in the Universe

<u>Outline</u>

- 1. Introduction
- 2. Cosmic Rays (Auger & Telescope Array)
 - Spectrum, composition & hadronic interactions
- 3. High Energy Neutrinos (IceCube)
 - Atmospheric and astrophysical flux
 - \circ v-p Cross section
- 4. Summary

<u>Acknowledgement:</u> Overview of relevant results in the field; heavy reliance on other people contributions (physics/results/figures) as indicated on slides.

Introduction High Energy Universe

Astrophysical Sources, probes, fluxes

High Energy Universe: Astrophysical Sources

GZK v: Cosmic Rays interact with CMB γ

High Energy Universe: Probes Multi-messenger Astronomy

High Energy Universe: Probes

What is the origin of Cosmic Rays with E up to 10^{20} eV ?

Astrophysical Source

- <u>Cosmic Rays</u>
- Gamma Rays
- <u>Neutrinos</u>
- Gravitational waves

Objective: We want to find/study astophysical objects that are sources of CR's and v's

High Energy Universe: Cosmic Rays

What is the origin of Cosmic Rays with E up to 10²⁰ eV ?

- 2 scenarios of Cosmic Rays (CR) origin:
 - Bottom-Up: charged particles accelerated from lower to high energies in astrophysical environments
 - Top-Down: the energetic particles arise from decay of massive particles originating from physical processes in the early Universe.
- CR spectrum formation & composition
- CR acceleration

• Fermi mechanism:
$$\gamma_{CR}$$
~2

- CR propagation
- CR interaction in atmosphere (strong interactions)

Sources unknown Composition uncertain $E_{CR}^{-\gamma_{CR}}$

Cosmic Rays: Understanding the spectrum <u>Fit the spectrum (</u>Gaisser's formulation of Peters cycle)

$$E\frac{dN}{dE} = \sum_{i} A_{i} E^{-\gamma_{i}} e^{-\frac{E}{Z_{i}E_{cutoff}}}$$

H,He,C,O,Fe nuclei groups Net CR Spectral index is the superposition of harder indices of different elements

Population 1: supernovae cutting around 100 TeV $E^{p}_{cutoff} = 120 \text{ TeV}$

 $E^{Fe}_{cutoff} = 26 \times 120 \text{ TeV} = 3.1 \text{ PeV}$ **Population 2:** "Galactic PeVatronTeV neutrinos $E^{P}_{cutoff} = 4 \text{ PeV}$

E^{Fe}_{cutoff} = 26 x 4 TeV = 104 PeV Population 3: "Galactic EeVatron" PeV neutrinos The best fit is achieved with p and Fe

Population 4: Extragalactic Proton: cut off due to GZK effect

The Cosmic Neutrinos Production Mechanisms

Extremely HE Universe beyond GZK sphere (50-100 Mpc) inaccessible with CR or γ -rays

High Energy Universe: v

Neutrino telescopes: Discovery of astrophysical diffuse v flux & v source searches

Connection to EIC: strong interactions

- **pA (AA)** HE Cosmic Rays:
 - o 'beam' flux from astro sources, (fixed) target nuclei (=Earth atmosphere)
- vp(n) (vA) HE Neutrinos:
 - o production of atm. v's (hadronic interactions)
 - 'beam' flux from astro sources and from Earth atmosphere, (fixed) target = H_2O (water/ice).

Connection to EIC: strong interactions

- **pA (AA)** HE Cosmic Rays:
 - 'beam' flux from astro sources, (fixed) target nuclei (=Earth atmosphere)
- vp(n) (vA) HE Neutrinos:
 - o production of atm. v's (hadronic interactions)
 - 'beam' flux from astro sources and from Earth atmosphere, (fixed) target = H_2O (water/ice).

Cosmic Rays

Cosmic Rays

π

 π^{-}

 π^+

neutrin

 π^{0}

"Primary" Cosmic Ray

e⁺

e

e⁻

Atmospheric Nucleus

 π^0

Strong interactions: production and decays of hadrons and leptons

"Secondary" Cosmic Rays... (about 50 produced after first collision)

Cosmic Rays

Ultra High Energy Cosmic Rays – reach well beyond LHC c.m. energy

Cosmic Rays: Experiments

Pierre Auger Observatory

Fluorescence: 4 telescopes

Surface Array: covers 3000 km² 1650 water-Cherenkov detectors (10 m², 1.5 km separation)

Largest CR experiment

Cosmic Rays: Experiments

Source: J. Matthews

Japan's funding to upgrade/expand TA (4xsize~2500km²) Largest CR experiment in the Northern Hemisphere

Telescope Array

Fluorescence: 3 telescopes

Surface Array: covers 700 km² 507 scintillator stations (3 m², 1.2 km separation)

Cosmic Rays: Showers

Figs. from D.Veberic

Cosmic Rays: Showers

Use hybrid events to disentangle particle physics and composition

(km)

altitude

Cosmic Rays: Showers

EM, X_{max} first interactions μ are produced late: sensitive to hadronic interactions

Use hybrid events to disentangle particle physics and composition

Cosmic Rays: Composition (Telescope Array)

Depth of shower maximum

TA composition measurement indicates CR's are protons at ultra high energies.

Conclusion relies on correct hadronic interaction modelling.

Cosmic Rays: Composition (Auger)

Depth of shower maximum

Data compared with predictions of recent versions (> 2016) of Hadronic Interactions (HI) MC models (LHC-inspired/tuned)

- □ Xmax, sources of HI uncertainties
 - Forward physics: photon spectra and diffraction
 - Nuclear interactions (extrapolations from p-p to p-Air: p-O needed, p-Pb not well reproduced)

Cosmic Rays: Composition (Auger)

Depth of shower maximum

Auger data, fig. from arXiv:1710.09478

- Auger composition measurement indicates CR's are <u>heavier than protons</u> at ultra high energies.
- □ Tension between TA and Auger results

Cosmic Rays: Composition (Auger)

Muon depth of maximum

Auger, PRD 90 (2014) 012012

Auger composition measurement with muons indicates CR's are iron's at ultra high energies.

Inconsistency between FD (e-m shower component) and SD (hadronic shower component) Auger data

SD not described by models (observed strong 30%-60% and increasing with energy deficit of muons). The same effect observed by TA [arXiv:1804.03877]

- All pre-LHC extrapolation models excluded.
- After LHC models predict the same pp cross section (low energies + extrapolations)

√s (GeV)

Figs from: T. Pierog (KIT)

Figs from: T. Pierog (KIT)

Modelling Hadronic Interactions: Impact of LHC LHCf Forward Photon production

arXiv:1703.07678

Disagreement between Data and Models Room for further models improvement

Neutrinos

Neutrino Observatories: Present & Future

Neutrinos: Detection method

Neutrino weak interaction

1960's: Method by M. Markov
Observe the <u>secondaries</u> via Cherenkov radiation
O(km) <u>muon tracks</u> from v_μ CC *1 TeV ~ 2.5 km, 1PeV ~ 15 km*O(10 m) e-m and/or hadronic <u>cascades</u>
from v_e CC, low energy v_τ CC, and v_x NC

"We propose to install detectors deep in a lake or in the sea and to determine the direction of charged particles with the help of Cherenkov radiation." Markov

Neutrino telescopes: at least 1 km³ detection volumes must be instrumented with optical sensors

Antarctic bedrock

First observation of PeV-energy cosmic neutrino

Flux of Atmospheric Neutrinos

Atmospheric v(conventional + prompt)

Atm. µ

prompt conventional atmo. v

Horizon

primary I

cosmic ray

atmo, v

air shower

Conventional v's Decays of π ,K mesons

$$\pi, \mathbf{K} \to \mu + \nu_{\mu} \to \mathbf{e} + \nu_{e} + \nu_{\mu}$$
$$\pi^{+} \bigvee_{\bar{d}}^{\mathsf{W}^{+}} \bigvee_{\nu}^{\mathbf{e}^{+}} \bigvee_{\nu}^{\mathbf{e}^{+}}$$

Prompt v's **Decays of Heavy Flavor** mesons/baryons (prompt v's not yet directly observed)

 D^{\pm} , D^{0} , D_{s} , Λ_{c}

Atmospheric Neutrinos (2)

Self-veto (experimental technique) will modify atm. v distribution

Atmospheric Neutrinos: conventional

<u>Conventional v's</u> Decays of π,K mesons

- flux peaked at horizon
- v_u dominated
- steeply falling flux spectrum E^{-3.7}
 - long lived mesons interact/loose energy before decay (τ~10⁻⁸s)

Hadronic Interactions important

Atmospheric Neutrinos: conventional

A. Fedynich et. al, arXiv:1503.00544 Figure made by H. Niederhausen

Flux of Atmospheric Neutrinos

 <u>Prompt v's</u>
 Decays of Heavy Flavor mesons/baryons
 (prompt v's not yet directly observed)

- flux isotropic
- equal parts v_{μ} and v_{e}
 - spectrum follows Cosmic Rays (E^{-2.7})
 ➢ short lifetime: interact/loose energy before decay (τ~10⁻¹²s)
- (<u>Forward</u>) heavy flavor production & fragmentation decays

$$\begin{aligned} \sigma^{pp \to Q\bar{Q}} &= \sum_{i,j} \iint_{0}^{1} \mathrm{d}x_{1} \mathrm{d}x_{2} f_{i}(x_{1}, \mu_{f}^{2}) f_{j}(x_{2}, \mu_{f}^{2}) \\ &\times \hat{\sigma}_{ij \to Q\bar{Q}}(x_{1}, x_{2}, \mu_{f}^{2}, \mu_{r}^{2}, \dots). \end{aligned}$$

CosmicRay-Air (composition) pdfs,nuclear effects small-x / saturation, gluons

(Forward) heavy flavor production in CR – Air interactions, fragmentation and decays

$$\sigma^{pp \to Q\bar{Q}} = \sum_{i,j} \iiint_{0}^{1} \mathrm{d}x_{1} \mathrm{d}x_{2} f_{i}(x_{1}, \mu_{f}^{2}) f_{j}(x_{2}, \mu_{f}^{2}) \times \hat{\sigma}_{ij \to Q\bar{Q}}(x_{1}, x_{2}, \mu_{f}^{2}, \mu_{r}^{2}, \dots)$$

Color dipole picture: Lowx/saturation_effects gluon fluctuates into QQ and interacts with hadronic target

(Forward) heavy flavor production in CR – Air interactions, fragmentation and decays

$$\sigma^{pp \to Q\bar{Q}} = \sum_{i,j} \iiint_{0}^{1} \mathrm{d}x_{1} \mathrm{d}x_{2} f_{i}(x_{1}, \mu_{f}^{2}) f_{j}(x_{2}, \mu_{f}^{2}) \times \hat{\sigma}_{ij \to Q\bar{Q}}(x_{1}, x_{2}, \mu_{f}^{2}, \mu_{r}^{2}, \dots$$

Charm production cross section (Data from RHIC and LHC):

Nuclear corrections to the total cross section $(\sigma_{pA}/A)/\sigma_{pp}$ are small (5-15%), but large for the differential $d\sigma_{pp}/dx_F$ cross section

BRESS A. Bhattacharya et.al. (2015), arXiv:1502.01076.

Atmospheric and Astrophysical Neutrinos

Atmospheric v:

- "background" for cosmic v
- Oscillation physics

Prompt:

ERS: R. Enberg et. Al., Phys. Rev. D78, 043005 (2008) BRESS A. Bhattacharya et.al. (2015), arXiv:1502.01076.

Astrophysical neutrinos

Waxman-Bahcall Bound (all flavor)

 $E_{\nu}^2 \Phi_{\rm WB} \approx 3.4 \times 10^{-8} \, {\rm GeV/cm^2 sr \, s}$

Benchmark model: Fermi acceleration at shock fronts

Flux of Astrophysical Neutrinos

Discovery of Cosmic Neutrinos with IceCube " $v_{\mu} + v_{e} + v_{\tau}$ All-Sky High Energy Starting Events" (HESE) analysis

Contained Cascades + Starting Tracks

v_{μ} Northern-Sky Astrophysical Neutrinos

- Data: 2009-2014 (6yr)
- Signature: tracks
- Fit assumption: $\Phi(E_v) = \Phi_0 x [E/100 TeV]^{-\gamma}$
- Result: (best fit)
 γ=2.08 +/- 0.13
- Energy range: 240 TeV – 10 PeV

Astrophys.J. 833 (2016) no.1, 3

5.6 σ detection of astrophysical flux Atmospheric-only hypothesis excluded at 6σ

$v_e + v_{\tau}$ All-Sky Astrophysical Neutrinos IceCube: H. Niederhausen, Y. Xu , ICRC2017

- Data: 2012-2015 (4yr)
- Signature: cascades
- Astrophysical $v_e + v_{\tau}$ Flux
 - Fit assumption: $\Phi(E_{\gamma}) = \Phi_0 x[E/100 \text{TeV}]$
 - P Result: (best fit) $\gamma = 2.48 + - 0.08$ $\Phi_0 = 1.57^{+0.23}_{-0.22} \times 10^{-18}$ [GeV⁻¹s⁻¹sr⁻¹cm⁻²]
 - Energy range: 10 TeV 2 PeV

"Background" fluxes

- Conventional v: HKKMS06 (30% uncertainty) A. Fedynitch et al., PRD86 114024, 2012
- Prompt v: BERSS15 (uncertainty from IceCube upper-limit ApJ 833, No 1, 2016)
- > Cosmic Rays μ : Gaisser12

Astrophysical Neutrino Flux: Comparison

IceCube: H. Niederhausen, ICRC2017

Astrophysical $v_e + v_\tau$ flux consistent with v_μ : p=0.04

Where are Prompt Neutrions?

IceCube global fit

Large astrophysical & small prompt v's flux

IceCube: Astrophysical Journal 809, 98 (2015)

Where are Prompt Neutrions?

Parameter	Best Fit	68% C.L.	90% C.L.	Pull
$\phi_{ m conv}$	1.10	0.94-1.31	0.87-1.49	
ϕ_{prompt}	0.00	0.00-1.04	0.00-2.11	
ϕ	6.7	5.5-7.8	4.6-8.6	
Y	2.50	2.41-2.59	2.35-2.65	
$\Delta \gamma_{\rm cr}$	0.017	-0.008-0.041	-0.023-0.057	0.34
$\phi_{\mu,S1}$	1.09	0.72-1.51	0.52-1.80	0.18
$\phi_{\mu,\text{S2}}$	0.84	0.31-1.37	0.00-1.71	-0.32
φ _{μ,H1}	1.12	0.75-1.54	0.56-1.84	0.23
$\phi_{\mu,\mathrm{H2}}$	1.27	0.94-1.61	0.73-1.84	0.54
$\phi_{E,S1}$	0.95	0.88-1.04	0.84-1.12	-0.34
ф _{Е,S2}	1.00	0.88-1.22	0.83-1.32	0.03
$\phi_{E,T1}$	1.02	0.95-1.09	0.90-1.14	0.10
$\phi_{E,T2}$	1.05	0.97-1.12	0.93-1.17	0.30
$\phi_{E,\mathrm{H1}}$	0.96	0.88-1.06	0.84-1.12	-0.29
ф _{Е,Н2}	0.95	0.86-1.04	0.81-1.10	-0.35

Note. ϕ is the value of the all-flavor neutrino flux at 100 TeV and is given in units of 10^{-18} GeV⁻¹ s⁻¹ sr⁻¹ cm⁻². ϕ conv and ϕ

prompt are given as multiples of the model predictions (see Table 2). "Pull" denotes the deviation of a nuisance parameter from its default value in units of the prior width σ .

IceCube: Astrophysical Journal 809, 98 (2015)

Atmospheric and Astrophysical TeV-PeV Neutrinos v-p DIS cross section / Low x

DIS v-N cross section: Standard Model

A. Cooper-Sarkar, P. Mertsch, S. Sarkar JHEP 08 (2011) 042

DIS v-N cross section: Standard Model

R.Gandhi et.al., Astropart. Phys. 5:81-110, 1996

DIS v-N cross section: Color Dipole Picture New Information about Nucleon Structure @ low x

C. Arguelles et. al., Phys. Rev. D 92, 074040 (2015)

Extrapolation of pQCD into small-x regime using color dipol description (asymptotic ln²(s) behavior of c. sections)

Beyond SM physics: leptoquarks, low scale quantum gravity models ..

DIS v-N cross section: IceCube TeV v_{μ} data

IceCube: Nature 551 (2017) 596

$$\frac{\sigma_{\text{meas.}}}{\sigma_{SM}} = 1.30^{+0.21}_{-0.19} \,(\text{stat.}) \,^{+0.39}_{-0.43} \,(\text{syst.})$$

Consistent with current Standard Model calculations

DIS v-N cross section: IceCube TeV-PeV v_e+v_{τ} data

Release of preliminary results: See Y. Xu (Stony Brook U.), for the IceCube Collab. DIS2018 Tuesday session

Cosmogenic GZK Neutrinos

Extremely High Energy Universe beyond GZK (Greisen–Zatsepin– Kuzmin) sphere (50-100 Mpc) inaccessible with cosmic- or γ -rays but not v's

GZK flux guaranteed for proton CR

- Optical & radio detection
- No GZK v observed (yet)

 Tight upper limits on GZK models are placed and constrains the UHE CR sources. Heavier CR composition?

Cosmogenic GZK Neutrinos

Extremely High Energy Universe beyond GZK (Greisen–Zatsepin– Kuzmin) sphere (50-100 Mpc) inaccessible with cosmic- or γ-rays but not v's

GZK flux guaranteed for proton CR

- Optical & radio detection
- No GZK v observed (yet)
- Ongoing GZK v detection (E >100 PeV) effort with radio technique

Connections of Astroparticle physics and EIC via cosmic rays and neutrino physics

low-x, low Q2, gluons, saturation, diffraction, hadronic interactions, forward region, heavy flavor, nuclear effects

Goal of this talk: inspire to work out details

Thank you!