Heavy Ion Physics and EIC

Tatsuya Chujo Univ. of Tsukuba

pre-DIS workshop April 15, 2018, Kobe

I. Introduction: Heavy Ion Physics and small-x Physics

Heavy Ion Collisions at RHIC and LHC

MADAI collaboration

3. large elliptic flow perfect fluid (sQGP), early thermalization

4. quark recombination

How QGP is thermalized so quickly ?

QGP rapid thermalization?

Saturation physics at small-x

At small x and small Q², the parton density will become large by non-linear effects due to gluon fusion Gluon density saturate (competing between gluon isolated splitting and gluon fusion): Gluon Saturation, Color Glass Condensate (CGC)

Color Glass Condensate (CGC)

- Saturated gluon state by the quantum fluctuation
 Universal picture at high energy nucleus and nucleon
- ③ No clear experimental evidence for the creation of CGC yet

To find/ test CGC by experiment...

- (1) more forward
- (2) Higher energy (LHC)
- (3) p<A
- (4) cleanness of probes: (e.g.) $h < \gamma_{dir.}$

$$x_{\min} = \frac{2p_T}{\sqrt{s}} \exp(-\eta),$$

LHC forward provides an ideal experimental field for CGC

Initial condition of HIC and "hot" matter properties

Understanding of initial condition: \rightarrow key to understand the QGP properties (e.g. η/s) and early thermalization.

2. Current experimental data in p-A @ RHIC and LHC

Long range correlations "Ridge"

RHIC (STAR, Au+Au 200 GeV)

LHC (ALICE, pPb, 5.02 TeV)

J/ψ in pA

- Hadron suppression on forward (proton-going) side at low p_T.
- J/ ψ yield: described by nPDFs nor by a CGC calculation
- Uncertainties on:
 - Production mechanism (x sensitivity etc.)
 - Other nuclear modifications (e.g. energy loss, thermalization in pA?)

Difficult to obtain conclusive data by hadrons only.

Open charm at forward rapidity

- Significant reduction of open charm yield at forward rapidity seen
- Compatible with nuclear PDFs (shadowing) and CGC calculations

π^0 - π^0 correlation at RHIC

- π⁰-π⁰ correlations w/ p_T and rapidity cut on near and away side jets.
 → tight constraint on x₂ and Q² of hard process.
- J_{dA}: correlated pair yield suppression factor on away side.
 - x₂ like property:

$$x_{Au}^{frag} = (\langle p_{T3} \rangle e^{-\langle \eta_3 \rangle} + \langle p_{T4} \rangle e^{-\langle \eta_4 \rangle}) / \sqrt{s_{NN}}.$$

- Strong suppression at low x, consistent with CGC expectation.
- Little or no suppression for peripheral.

3. Clearer probes for gluon density in a hadron collider

Even in the proton, (very) limited information about gluons at x < 10⁻⁴

Ratio Pb/p has large uncertainties over broad x range

Direct photons can provide strong constraints on the gluon PDFs

- LO dominant process: quark-gluon Compton.
- Fragmentation photon can be suppressed by isolation cut.

→Direct access to the gluon PDFs and saturation physics

Charm production

- also directly sensitive
- but fragmentation reduces kinematic constraint

Direct photon production

Why photos?

• Cleaner observables: EM probes (direct photons, DY)

- no final state interaction
- well-understood process
- well-defined kinematics
- Direct photons: large cross section

NLO pQCD calculations with shadowing (EPS09) Helenius, Eskola, Paukkunen, arXiv:1406.1689

• DY at forward p-A: likely not possible with expected luminosity.

• Hadronic observables:

- final state modification in p-A.
- production process uncertainties.
- uncertainty of kinematic relation to Bjorken-x (e.g. fragmentation).
- Best hadronic observables: open charm (e.g. D)
 - direct sensitivity to gluons
 - final state interaction?
 - x sensitivity (next slide)?

x-Sensitivity: photons vs D

x₂ distribution for forward production

- LO production from PYTHIA
- D⁰ (LHCb) vs. prompt γ (FoCal)
- prompt γ:
 - apparent peak at x ~ 10⁻⁵
 - significantly larger mean value
- Significant advantage of proposed direct photo measurement compared to charm in LHCb.

A signal of CGC: R_{pA} for direct photons

Two scenarios for forward γ production in p+A at LHC:

- Normal nuclear effects linear evolution, shadowing
- Saturation/CGC running coupling BK evolution

$$R_{pA} \equiv rac{d^3N/dp_T^3(pA)}{\langle N_{coll}
angle \cdot d^3N/dp_T^3(pp)},$$

- Strong suppression in direct γ R_{pA}.
- Signals expected at forward η , low-intermediate p_T .

4. Physics program of Forward Calorimeter at LHC

ALICE FoCal Project

FoCal = <u>Fo</u>rward <u>Cal</u>orimeter:

FoCal-E: EM Calorimeter
FoCal-H: Hadronic Calorimeter
★7 m away from the interaction point.
★ main challenge: separate γ/π⁰ at high energy
★ Si-W calorimeter, effective granularity ≈ Imm²

• p-Pb: looking for CGC effects at small-x

- Direct photons
- π⁰
- di-hadron correlations (π^0 - π^0)
- jets, quarkonia

• p-p: forward production, baseline

• (same as p-Pb)

• Pb-Pb: medium density at forward y

- π^0 at 3.2 < η < 4.5
 - longitudinal evolution of medium
 - provide jet quenching at forward rap., same region for J/ ψ (muon arm)

 $3.2 < \eta < 5.3$

Kinematic reach by FoCal, and photons

Forward measurements at LHC access unique rage in x and Q²
FoCal: direct photons and hadrons (π⁰), jets
Others: hadronic probe only

FoCal pseudo data, impact on gluon nPDF 22

Impact on a ``nuclear" dataset

When added on top of a **nuclear-like dataset** (DIS and DY data only) the impact of the FoCal data becomes much more significant, since there is no "nuclear HERA"

Assuming that collinear DGLAP factorisation works, a determination of the nuclear modifications of the gluon PDF at the 10% level down to x=10-4 would be possible $\frac{4}{2}$

FOCAL pseudodata

https://indico.cern.ch/event/713518/

π^{0} - π^{0} correlation and jet measurement by FoCal ²³

Measuring π^0 in Pb-Pb events

Pb-Pb program: Nuclear modification at forward rapidity and high $p_{\rm T}$

Longitudinal medium flow at forward rapidity²⁵

C Park, S Jeon etc al

Density at η~4 is about 0.8 times mid-rapidity

First look in MUSIC shows strong increase of R_{AA} at forward rapidity

5. Forward Calorimeter Detector R&D

FoCal-E prototype design

- Si/W sandwich calorimeter layer structure:
 - W absorbers (thickness 1X₀)+ Si sensors
- Longitudinal segmentation:
 - 4 segments low granularity (LG)
 - 2 segments high granularity (HG)

LG segments - 4 (or 5) layers - Si-pad with analog readout - cell size 1 x 1 cm² - longitudinally summed HG segments - single layer - CMOS-pixel (MAPS*) - pixel size \approx 30 x 30 μ m² - digitally summed in 1mm² cells

*MAPS = Monolithic Active Pixel Sensor

* note: two-photon separation from $\pi 0$ decay (pT = 10 GeV/c, y = 4.5, α = 0.5) is d = 2 mm.

High Granularity (HG) Prototype, MAPS (NL, NO)

• 4x4 cm² cross section, 28 X₀ depth

28

• 24 layers: W absorber + 4 MAPS each

• MIMOSA PHASE 2 chip (IPHC Strasbourg)

- 30 μm pixels
- 640 μs integration time

(needs upgrade – too slow for experiment)

- 39 M pixels total
- Test with beams at DESY, CERN PS, SPS

High Granularity (HG) Prototype, MAPS (1)

Good linearity and energy resolution (MAPS)

- different calibration for low/high energy, possibly still improve calibration.
- proof of principal of digital calorimetry works.

High Granularity (HG) Prototype, MAPS (2)

Position resolution:

calculate difference of position from

- cluster in layer 0 and
- center of gravity of shower in layers 1 23

single shower position resolution obtained from width of residuals

can provide excellent two-shower separation

Low Granularity (LG) Prototype, PAD (JP, US)

FoCal PAD proto type, 1 segment (ORNL, Tsukuba, CNS-Tokyo)

Test beam setup @ PS (same for SPS) in 2015

PAD perfomance at PS/SPS (2014, 2015, 2016)

33

Low Granularity (LG) Prototype, PAD (India)

HV connector

Connector for kapton cable to FEE boards

Bias resistors and capacitors

Good linearity and energy resolution for FoCal

Plan in 2018

- mini-FoCal production and test at PS/SPS, and under discussion to test in ALICE (7.6 m from IP)
- Three tower structure, EM-part.

Summary

- Rich physics and unexplored region @ forward rapidity at LHC
 - CGC (or not), nature of CGC.
 - Strong connections to QGP thermalization mechanism, strong field, long range Δη correlations (ridge).
 - Advantage of direct photon measurement at LHC forward region.
 - FoCal project is proposed in ALICE internally.
 - R&D efforts to finalize the final design are on-going.
 - FoCal physics potential extends to: forward π^0 - π^0 correlations, forward jet measurement by FoCal in pp, p-Pb, even in Pb-Pb.
- Outlook:
 - First measurement: 3 <η<4, in Run-3 (2021-2023).
 - Full FoCal (3.2 <η < 5.3) in Run-4 (2026-2029).

Perspective to use a similar technology at EIC ? 37

Si-W with high position resolution EMCal:

- new technology

- could be useful for precise angler resolution at forward region in EIC

- Happy to discuss for possible collaboration with EIC!

Thank you !