LHC Physics and EIC

Shima Shimizu (KEK 協力研究員)

Many thanks to Julia Furletova and Rik Yoshida, for their help!

Disclaimer: I am **not** in the EIC community. Your inputs for a discussion are very welcome!

LHC (Large Hadron Collider)

Lake Leman

Geneva city

←Geneva Airport

CERN

pp collision ATLAS \rightarrow

LHCb

70

France

LHC (Large Hadron Collider)

Since 2009, LHC provided high energy protonproton collisions at Vs=0.9 TeV, 2.76 TeV, 7 TeV, 8 TeV, and 13 TeV.

- Search of new physics beyond the Standard Model.
- Precise measurement of the Standard Model physics.

e.g. Higgs, top...

Proton-proton collision

ATLAS and CMS look for new physics from hard scattering of <u>quarks or gluons (partons)</u>.

... and there are a lot of QCD to be understood.

Examples

Dilepton search

 Increasing uncertainties on background (SM predictions) at high mass region.
 ← From proton parton distribution functions (PDFs).

tt cross section measurement

Predictions are given by

Matrix Element MC + Parton Shower MC

(Matrix Element \rightarrow Calculation of the hard scattering.)

- All using the same Matrix Element in POWHEG
 - Differences come from
 - More/Less radiations
 - Different parton shower MCs

Can EIC give better understanding of them?

Deep Inelastic Scattering (DIS)

ep DIS at HERA played a crucial role in understanding of the proton structure.

Inclusive DIS cross sections can be written with structure functions.

$$\frac{d^2\sigma(e^{\pm}p)}{dxdQ^2} = \frac{2\pi\alpha^2}{Q^4}Y_{\pm}\left[F_2(x,Q^2) - \frac{y^2}{Y_{\pm}}F_L(x,Q^2) \mp \frac{Y_{\pm}}{Y_{\pm}}xF_3(x,Q^2)\right] \qquad Y_{\pm} = 1 \pm (1-y)^2$$

cross section of point-like particles **Structure functions** reflect momentum distribution of partons in the proton.

 $y = \frac{p \cdot q}{p \cdot k}$

DIS and PDFs

The proton structure is parameterised by <u>Parton</u> <u>Distribution Functions</u> (PDFs), $q(x,Q^2)$ and $g(x,Q^2)$. They are determined from a fit on DIS cross sections.

The Q² evolution can be described by perturbative QCD, using DGLAP equation.

Charged current DIS (CC)

W±

exchange

DGLAP works well...

pre-LHC PDFs succeed to describe LHC data in general.

Inclusive jet cross section vs. prediction using CT10 PDFs

CT10 PDF: HERA DIS, Fixed target, Tevatron W/Z, jets

However, it is not ideal situation for LHC searches.

- Looking for deviations from the SM, but SM uses PDFs with LHC feedbacks.
- → Great to have other cross checks and/or more inputs from other experiments.

EIC provides opportunity for improvement

With Vs up to 141 GeV, EIC ep has a decent coverage of kinematic region.

- Free from target correction and nuclear effect.
- Free from unknown physics at TeV scale.
- In a region where DGLAP is (probably) applicable.

EIC aims <u>10-100 fb⁻¹/year</u> of data.

- c.f. HERA: <~0.5 fb⁻¹ in total, for each experiment.
- → Can provide useful and powerful inputs for PDF determination.
 - High-x measurements
 - Charged Current DIS
 - F_L measurement

Why is high-x important?

- As a search goes higher mass, more precision at high-x is needed.
 - Uncertainties are large.

 Shape of gluon and seaquark PDFs can move with ATLAS jet data.

M = 10 TeV

10⁻¹

х

х

High-x measurement from HERA

ZEUS high-x measurement (Not in the PDF fit)

- Measured at relatively high Q²
- At very high x, struck quark escapes from the beam pipe
 - → Highest-x bin (x>x_{edge}) shows the integrated cross section.

Stat. error dominant →Does EIC allow a better measurement?

HERA vs EIC for high-x measurement

In the ZEUS measurement:

Kinematic reconstruction

- Q^2 from the scattered electron $Q^2 = 2E_e E'_e (1 + \cos \theta_e)$
- x from jet* energies and angles (γ_h) , 10^2 to avoid large uncert. from $\Delta x/x^2 1/\gamma_e^2 10$
 - if e and jet balance,
 E'_{eT} and jet angle are used.

~Measured region

At EIC:

- Scattered electron will be well in the central region.
- How about the scattered quark??

HERA vs EIC for high-x measurement

~Measured region (N.B. my hand-drawing)

In the ZEUS measurement:

Kinematic reconstructiv If it is achieved, EIC *might* improve these uncertainties Q^2 from the scatte LHC 13 TeV, NNLO, α_s(M_z)=0.118 $Q^2 = 2E_e E'_e (1 +$ LHC 13 TeV, NNLO, α_s(M_z)=0.118 PDF4LHC15 prior PDF4LHC15 prior CT14 **CT14** 12 • *x* from jet* energie THE NNPDF3.0 THAT NNPDF3.0 ق1.15 الله 1.1 MMHT14 4 MMHT14 to avoid large unce Antiquark 1 U01.05 if e and jet bala **6**0.95 **높**0.95 j 0.9 E'_{eT} and jet ang g 09 0.85 0.8 0.85 10 10² M_x (GeV) 10^{3} 10² M_x (GeV) 10 10^{3} At EIC: from its advantage of large statistics. Scattered electron *might*: need to know kinematic coverage and precision. How abound the scattered quark: 10 10 Q Need good energy/angle 0<E'<20 GeV (2 GeV steps) 1 < Fh < 15 GeV (1 GeV steps) 10^{3} 20<E'<100 GeV (5 GeV steps) 30 < Fh < 100 GeV (10 GeV steps) measurement in the forward region (10 x 100 GeV) (10 x 100 GeV) 10^{2} 10 10 Hadron-Electronendcap endcap CENTRAL DETECTOR Far-forward Far-forwa 10^{-1} 10electron Hadron 10⁻³ 10⁻⁵ 10^{-4} 10⁻² 10⁻³ 10⁻¹ 10⁻¹ 10^{-4} 10^{-2} _v 1 10^{-5} x¹

Charged Current DIS

ь. П

Charge selective interaction via W exchange

$$e^{-}q^{(+)} \rightarrow \nu q^{(-)}$$

 $e^{+}q^{(-)} \rightarrow \overline{\nu}q^{(+)}$

Neutrinos at the final state = **no scattered electron**

Electron/Positron beams give flavour separation of PDFs $\widetilde{\sigma}(e^+p) \propto [(\overline{u}+\overline{c})+(1-y)^2(d+s)]$ $\widetilde{\sigma}(e^-p) \propto [(u+c)+(1-y)^2(\overline{d}+\overline{s})]$

Charged Current DIS at EIC?

A study requires decent description by Monte Carlo.

10⁻³

 10^{-4}

 10^{-5}

10⁻²

 10^{-1}

_x 1

Charm-tagged Charged Current DIS

- If a charm is tagged in CC DIS, the cross section has a sensitivity to the <u>intrinsic strange</u>.
- Strange quark distribution is not well determined.
 - ATLAS data prefers more strangeness than fixed target data?

Requires charm tagging in the Central-Forward region.

(√s~70 GeV, Q²>100GeV²) σ(e⁺p -> v_e +c +X) ~ 0.1 pb ⇒ with 10fb⁻¹/year ⇒ ~ 1000 events/year

Projection

onto

jet axis

Decay length

Beam spot

 W^+

S

Longitudinal structure function F_L

- F_L is proportional to the cross section of longitudinal photon $F_L \propto \sigma_L$ interacting with proton.
- In naïve Quark Parton Model, proton has co-linear spin ½ quarks only.

Longitudinal photon cannot interact with a quark \rightarrow F_L=0

• Gluon emission in the proton $\rightarrow F_{L} \neq 0$

i.e. F_L directly reflects gluon dynamics in the proton.

gluon PDF

In perturbative QCD:
$$F_L = \frac{\alpha_s}{4\pi} x^2 \int_x^1 \frac{dz}{z^3} \left[\frac{16}{3} F_2 + 8 \sum_q e_q^2 \left(1 - \frac{x}{z} \right) zg(z) \right]$$

 F_L provides another validity check of the gluon PDFs and even the DGLAP framework at low Q².

Instability of gluon PDF at low Q² R. Throne DIS2008

F₁ measurement from HERA

 $@(x_1, Q_1^2)$ slope $\tilde{\sigma}_2$ = F, 0 v^2/Y_{\perp}

F₁ measurement requires

- **large y** to see F_1 contribution
- Comparison at the same (x, Q^2) but the different y

 $y = \frac{Q^2}{2} \rightarrow$ multiple beam energies

Dedicated data taking with lowered proton beam energies $(920 \text{ GeV} \rightarrow 460 \text{ GeV} 14 \text{pb}^{-1}, 575 \text{ GeV} 8 \text{pb}^{-1})$ at the last 3 months of HERA

 \rightarrow First direct F₁ measurement at collider experiments

If electron ID fails, large amount of background (photoproduction) comes in.

H1 was equipped with detectors for good electron identification in rear side.

Can EIC do better job?

Advantages of EIC

- Variable centre of mass energies.
- High luminosity
- (Better systematics?)

EIC: $Q^2 \sim 5$ GeV gives x ~ 10^{-3} - 10^{-2} (depends on how CM energies varies) \rightarrow Would be intersting to see gluons

measured for identification of DIS events.

σ^{cc}, σ^{bb}

- Cross section with heavy-flavoured quark pair (cc, bb).
- Sensitive to gluons, but the description of heavy flavour production is complicated. $\underline{P}^{\text{proton}(P)}$

Latest HERA results show some difficulty in describing both σ^{cc} and low-x $\sigma^{inc. DIS}$.

Charm production rate at low Vs eN Charm and DIS events in bins, 5 bins/decade in x, 1 bin in O2 $> 5 \, \text{GeV}^2$ Int. lumi = 10 fb

 $e^{+}(k)$

γ (q)

With $v_s > 100$ GeV and large stat., perhaps EIC can clarify the situation.

 $e^+(k')^{23}$

b

С

Description of jet physics at LHC

Understanding and description of jet production is quite important at LHC.

- Multijet is a severe background in searches and measurements.
- Hard radiation gives one of the major uncertainties in a precise measurement of e.g. top quarks.

Several MCs are tested in various measurements using various observables.

- LO $2 \rightarrow 2$ MCs with parton shower models.
 - Easy event generation to test analysis methods.
- Multi-leg $(2 \rightarrow N)$ LO MCs
- NLO MCs, matched to parton shower MCs.
- MC with all-order sum of wide angle QCD radiation.

JHEP 12 (2015) 105 ATLAS 4jets, Δφ_{3i}

ATLAS W+2jets, Δy_{j1, j2} vs=7 TeV, 4.6fb⁻¹ EPJC 75(2015) 82

Jet production at EIC

- ep colliders give a cleaner circumstance than pp.
- ♦ How limited is the p_T reach?

γ*/2

remnant

Boson-gluon fusion

Jet

proton

remnant

QCD Compton

Jet substructure measurements?

- Quite a progress in understanding of jet substructure during the LHC era.
- Jet substructure is an important tool to identify boosted objects at LHC.

High p_{T} top or W/Z bosons decaying hadonically can be observed as large size jets.

Large-R jet Data Prediction High top pt

 $\langle n_{charged} \rangle$

20

ATLAS

s = 8 TeV

 $r_{int} = 20.3$ > 0.5 Ge

500

EPJC 76 (2016) 1

Quark Jets (Data) Gluon Jets (Data) Quark Jets (Pythia 8 AU2)

 Gluon Jets (Pythia 8 AU2) — Quark Jets N³LO pQCD

- Gluon Jets N³LO pQCD

1500 Jet p₋ [GeV]

1000

ATLAS

√s = 13 TeV. 36.1 tť (all-had)

ingle top

+Ŵ/7/H

Validation region

Data 2015+2016 Stat. Unc.

arXiv: 1801.02052 Stat. @ Tot. Syst. Unc. Mass of large-R jets in ttbar cross section measurement Leading large-R jet mass [GeV]

- Several observables are measured at LHC.
 - Jet mass, k_{τ} splitting, jet charge, charged particle multiplicity.

Gluon/quark-initiated jets have different rapidity dependence.

Studies of charged particle multiplicity \rightarrow accesses to the origin of jets.

Are they interesting at EIC as well?

Leptoquark search

Particular attention on leptoquarks

Anomalies seen in B physics invoke a lot of interest on leptoquarks.

B

LQ

- Larger branching fraction of $B \rightarrow D^{(*)}\tau v$. (~4 σ)
 - Seen by Belle, Babar, LHCb.

$$\xrightarrow{\bar{B}^{0}} \xrightarrow{\bar{d}} \xrightarrow{c} \xrightarrow{c} D^{*+} \\ \xrightarrow{W^{-}} \xrightarrow{c} \xrightarrow{c} \overline{\nu_{\tau}} \qquad R_{D^{(*)}} = \frac{\operatorname{Br}(B \to D^{(*)} \tau \nu_{\tau})}{\operatorname{Br}(B \to D^{(*)} l \nu_{l})}$$

- Smaller branching fraction of $b \rightarrow s\mu^+\mu^-$ process.
 - LHCb driven.
 - Smaller than $b \rightarrow se^+e^-$ (~2.5 σ)
 - Analyses of decay angles show tensions. (\sim 3.4 σ)

Leptoquarks can explain the both anomalies.

LHC Leptoquark searches

- Searches are done through LQ pair production or single production.
- Limits depend on branching ratio (β or 1- β). (shown for specific β (1, 0, or 0.5))
- Single production has a dependence on the coupling λ .

Leptoquark search at ep collider

14 categories of leptoquarks via s-channel or u-channel are looked for, in $ep \rightarrow lX$

I O type	I	F	0	Drov	Justion	Coupling	ße			
год туре	J	Г	4	do	and mod	Coupling	ρ_{ℓ}			
decay modes										
S^L	0	2	-1/3	$e_L^- u_L$	\rightarrow	$\ell^- u$	λ_L	1/2		
<i>D</i> ₀	0					$\nu_\ell d$	$-\lambda_L$	1/2		
S_0^R	0	2	-1/3	$e_R^- u_R$	\rightarrow	$\ell^- u$	λ_R	1		
$ ilde{S}^R_0$	0	2	-4/3	$e_R^- d_R$	\rightarrow	$\ell^- d$	λ_R	1		
S_1^L	0	2	-1/3	$e_L^- u_L$	\rightarrow	$\ell^- u$	$-\lambda_L$	1/2		
						$\nu_\ell d$	$-\lambda_L$	1/2		
			-4/3	$e_L^- d_L$	\rightarrow	$\ell^- d$	$-\sqrt{2}\lambda_L$	1		
$V_{1/2}^{L}$	1	2	-4/3	$e_L^- d_R$	\rightarrow	$\ell^- d$	λ_L	1		
T R	1	2	-1/3	$e_R^- u_L$	\rightarrow	$\ell^- u$	λ_R	1		
$V_{1/2}^{11}$			-4/3	$e_R^- d_L$	\rightarrow	$\ell^- d$	λ_R	1		
$\tilde{V}_{1/2}^L$	1	2	-1/3	$e_L^- u_R$	\rightarrow	$\ell^- u$	λ_L	1		
			+2/3	$e_R^+ d_L$	$\rightarrow \left\{ \right.$	$\ell^+ d$	λι	1/9		
V_0^L	1	0				≂ น ม₀ม	λ_L	1/2		
V_{c}^{R}	1	0	+2/3	e ⁺ dp	($\ell^+ d$	λ_{L}	1/2		
\tilde{V}_{R}^{R}	1	0	12/3	etun		l+21		1		
• 0	1	0	10/0	$c_L u_R$	/	<u>.</u>	N _R	1		
V_1^L	1		±9/9	$e^{+}dt$		$\ell^+ d$	$-\lambda_L$	1/2		
		0	12/0	$c_{R^{\alpha_L}}$	\sim	$\bar{ u}_\ell u$	λ_L	1/2		
			+5/3	$e_R^+ u_L$	\rightarrow	$\ell^+ u$	$\sqrt{2}\lambda_L$	1		
$S_{1/2}^{L}$	0	0	+5/3	$e_R^+ u_R$	\rightarrow	$\ell^+ u$	λ_L	1		
cR.	0	0	+2/3	$e_L^+ d_L$	\rightarrow	$\ell^+ d$	$-\lambda_R$	1		
$\mathcal{S}_{1/2}$			+5/3	$e_L^+ u_L$	\rightarrow	$\ell^+ u$	λ_R	1		
$\tilde{S}_{1/2}^L$	0	0	+2/3	$e_R^+ d_R$	\rightarrow	$\ell^+ d$	λ_L	1		

Charged lepton flavour violation (CLFV)

Neutrino oscillation means lepton flavour violations in the neutrinos. \rightarrow Why not in the charged lepton?

ep colliders can search for CLFV (1,3) in DIS from $ep \rightarrow \tau X$

- Much less background compared to $ep \rightarrow eX$
- Less constraint compared to CLFV (1,2). cf $\mu \rightarrow e\gamma$

 $ep \rightarrow \tau X$ can be interpreted as a process via leptoquarks.

 \overline{q}_{α}

s-channel

 $\lambda_{1\alpha}$

 q_{α}

Sensitivities at EIC vs HERA

- With 10 fb⁻¹ data, EIC can improve HERA limits, which are stringent for (2,3) and (3,2) in case of S₀^R
 - Higher Vs gives higher sensitivities.
 - Larger statistics will give further improvement.
 - Polarization of e^{-}/e^{+} beams can increase or suppress the cross section.
 - \rightarrow Distinguish L vs R.

EIC can take a role in leptoquark searches

Summary

- LHC looks for new physics using pp collisions at $\sqrt{s} = 13$ TeV. LHC physics require:
 - Better determination of the proton parton distribution functions.
 - Good description of jet production.
- EIC can improve the determination of the parton distribution functions.
 - High-y measurements are very important.
 - F_L can be measured.
 - → Require good measurement of hadrons in the forward region and electrons in the rear side.
- Jet physics at EIC could be also interesting.
- EIC can play a role in the search of leptoquarks, which get particular attention due to the anomalies in B physics.

And a remark...

As you may notice, there are a lot of room for sensitivity studies.

Rik wrote me:

"these kind of HEP oriented studies are somewhat neglected at the EIC"

- A lot of interest for the EIC from the nuclear physics community.
- Less discussion in the HEP community.

"this is a machine that will run likely concurrently with HL-LHC"

→ Good to consider the HEP-oriented possibilities at EIC.

CLFV EIC vs B factory

• Rare decay $\tau \rightarrow e\gamma$ at B factories* can set limits for $\alpha = \beta$

(11)

(33)

--- 0.1fł

M. Gonderinger, M. J. Ramsey-Musolf JHEP 05 (2012) 047

EIC could compete with previous B factories for the 1st generation quarks with large statistics.

Not sure wrt Belle II.

Where HERA ep has sensitivities:

PLB701(2010)20

$ep \to \tau X$ H1				F = 0			$ep \to \tau X$				H1	F=2				
Upper exclusion limits on $\lambda_{eq_i} \lambda_{\tau q_j} / m_{LQ}^2 (\text{TeV}^{-2})$								Upper exclusion limits on $\lambda_{eq_i} \lambda_{\tau q_j} / m_{LQ}^2 (\text{TeV}^{-2})$								
for lepton flavour violating leptoquarks at 95% CL								for lepton flavour violating leptoquarks at 95% CL								
<i>a.a.</i>	$S_{1/2}^{L}$	$S^{R}_{1/2}$	$\tilde{S}_{1/2}^L$	V_0^L	V_0^R	\tilde{V}_0^R	V_1^L		$q_i q_j$	S_0^L	S_0^R	\tilde{S}_0^R	S_1^L	$V_{1/2}^{L}$	$V^{R}_{1/2}$	$\tilde{V}_{1/2}^L$
<i>qiqj</i>	$\ell^- \overline{U}$ $\ell^+ U$	$\ell^- \bar{U}, \ell^- \bar{D}$ $\ell^+ U, \ell^+ D$	$\ell^- \bar{D}$ $\ell^+ D$	$\ell^- \bar{D}$ $\ell^+ D$	$\ell^{-}\bar{D}$ $\ell^{+}D$	$\ell^- \overline{U}$ $\ell^+ U$	$\ell^- \bar{U}, \ell^- \bar{D}$ $\ell^+ U, \ell^+ D$			$\ell^- U$ $\ell^+ \bar{U}$	$\ell^- U$ $\ell^+ \overline{U}$	$\ell^- D$ $\ell^+ \overline{D}$	$\ell^- U, \ell^- D$ $\ell^+ \bar{U}, \ell^+ \bar{D}$	$\ell^- D$ $\ell^+ \bar{D}$	$\ell^- U, \ell^- D$ $\ell^+ \bar{U}, \ell^+ \bar{D}$	$\ell^- U$ $\ell^+ \overline{U}$
11	$ au ightarrow \pi e$ 0.06 1.4	$ au ightarrow \pi e$ 0.03 1.2	$ au ightarrow \pi e$ 0.06 2.2	$ au ightarrow \pi e$ 0.03 1.2	$ au ightarrow \pi e$ 0.03 1.3	$\tau \rightarrow \pi e$ 0.03 0.9	$\tau \rightarrow \pi e$ 0.005 0.4		11	G _F 0.3 1.6	$ au ightarrow \pi e$ 0.06 1.8	$ au ightarrow \pi e$ 0.06 2.6	$ au ightarrow \pi e$ 0.01 1.0	$ au ightarrow \pi e$ 0.03 1.1	$\tau \rightarrow \pi e$ 0.01 0.7	$\tau \rightarrow \pi e$ 0.03 0.8
12	1.5	$ au \to Ke$ 0.04 1.2	$ \begin{array}{c} K \rightarrow \pi \nu \bar{\nu} \\ 5.8 \times 10^{-4} \\ 2.2 \end{array} $	au ightarrow Ke 0.02 1.5	$\tau \rightarrow Ke$ 0.02 1.6	1.2	$ \begin{array}{c} K \rightarrow \pi \nu \bar{\nu} \\ 1.5 \times 10^{-4} \\ 0.5 \end{array} $		12	$ \begin{array}{c} K \to \pi\nu\bar{\nu} \\ 5.8 \times 10^{-4} \\ 1.9 \end{array} $	2.1	$\tau \rightarrow Ke$ 0.04 2.9	$\begin{array}{c} K \rightarrow \pi \nu \bar{\nu} \\ 2.9 \times 10^{-4} \\ 1.1 \end{array}$	$ \begin{array}{c} K \rightarrow \pi \nu \bar{\nu} \\ 2.9 \times 10^{-4} \\ 1.9 \end{array} $	$\tau \rightarrow Ke$ 0.02 1.3	1.5
13	*	$\begin{array}{c} B \rightarrow \tau \bar{e} \\ 0.07 \\ 2.2 \end{array}$	$B \rightarrow \tau \bar{e}$ 0.07 2.2	$B \rightarrow \tau \bar{e}$ 0.03 1.8	$B \rightarrow \tau \bar{e}$ 0.03 1.8	*	$B \rightarrow \tau \bar{e}$ 0.03 1.8		13	*	*	$B \rightarrow \tau \bar{e}$ 0.07 3.0	^{V_{ub} 0.3 1.3}	$B \rightarrow \tau \bar{e}$ 0.03 2.2	$\begin{array}{c} B \rightarrow \tau \bar{e} \\ 0.03 \\ 2.4 \end{array}$	*
2 1	3.4	$ au \rightarrow Ke$ 0.04 2.8	$ \begin{array}{c} K \rightarrow \pi \nu \bar{\nu} \\ 5.8 \times 10^{-4} \\ \textbf{3.9} \end{array} $	$\tau \rightarrow Ke$ 0.02 1.5	$\tau \rightarrow Ke$ 0.02 1.6	1.2	$ \begin{array}{c} K \rightarrow \pi \nu \bar{\nu} \\ 1.5 \times 10^{-4} \\ 0.5 \end{array} $		2 1	$ \begin{array}{c} K \to \pi \nu \bar{\nu} \\ 5.8 \times 10^{-4} \\ 2.7 \end{array} $	2.7	$\tau \rightarrow Ke$ 0.04 3.5	$ \begin{array}{c} K \rightarrow \pi \nu \bar{\nu} \\ 2.9 \times 10^{-4} \\ 1.4 \end{array} $	$ \begin{array}{c} K \rightarrow \pi \nu \bar{\nu} \\ 2.9 \times 10^{-4} \\ 1.2 \end{array} $	$\tau \rightarrow Ke$ 0.02 0.7	0.9
2 2	$\tau \rightarrow 3e$ 0.6 6.4	$ au \rightarrow 3e$ 0.9 4.2	$ au \rightarrow 3e$ 1.8 5.0	$ au \rightarrow 3e$ 0.9 2.7	au ightarrow 3e 0.9 2.8	$\tau \rightarrow 3e$ 0.3 3.5	$\tau \rightarrow 3e$ 0.2 1.4		2 2	au ightarrow 3e 0.6 6.3	au ightarrow 3e 0.6 6.8	$\tau \rightarrow 3e$ 1.8 5.4	au ightarrow 3e 1.5 2.3	au ightarrow 3e 0.9 2.7	au ightarrow 3e 0.5 2.2	au ightarrow 3e 0.3 3.4
23	*	$B \rightarrow \tau \bar{e} X$ 14.0 5.8	$B \rightarrow \tau \bar{e} X$ 14.0 5.6	$B \rightarrow \tau \bar{e}X$ 7.2 3.6	$B \rightarrow \tau \bar{e}X$ 7.2 4.0	*	$B \to \tau \bar{e}X$ 7.2 3.6		23	*	*	$B \rightarrow \bar{\tau} e X$ 14.0 5.8	$B \rightarrow \bar{\tau} e X$ 7.2 2.7	$B \rightarrow \bar{\tau} e X$ 7.2 3.6	$B \rightarrow \bar{\tau} e X$ 7.2 4.0	*
31	*	$\begin{array}{c} B \rightarrow \tau \bar{e} \\ 0.07 \\ 5.3 \end{array}$	$B \rightarrow \tau \bar{e}$ 0.07 4.8	V _{ub} 0.14 1.5	$B \rightarrow \tau \bar{e}$ 0.03 1.7	*	^{V_{ub} 0.14 1.5}		3 1	*	*	$B \rightarrow \tau \bar{e}$ 0.07 4.0	$B \rightarrow \tau \bar{e}$ 0.03 2.0	$B \rightarrow \tau \bar{e}$ 0.03 1.2	$\begin{array}{c} B \rightarrow \tau \bar{e} \\ 0.03 \\ 1.3 \end{array}$	*
32	*	$B \rightarrow \tau \bar{e} X$ 14.0 7.9	$B \rightarrow \tau \bar{e} X$ 14.0 7.6	$B \rightarrow \tau \bar{e}X$ 7.2 2.9	$B \rightarrow \tau \bar{e}X$ 7.2 3.1	*	$B \rightarrow \tau \bar{e}X$ 7.2 2.9		32	*	*	$\begin{array}{c} B \rightarrow \bar{\tau} eX \\ 14.0 \\ 7.9 \end{array}$	$B \rightarrow \bar{\tau}eX$ 7.2 3.7	$B \rightarrow \bar{\tau}eX$ 7.2 2.9	$B \rightarrow \bar{\tau} e X$ 7.2 3.1	*
33	*	$ au \rightarrow 3e$ 0.9 10.1	au ightarrow 3e 1.8 9.1	au ightarrow 3e 0.9 4.7	au ightarrow 3e 0.9 4.9	*	au ightarrow 3e 0.2 4.7		33	*	*	$\tau \to 3e$ 1.8 10.1	$\tau \rightarrow 3e$ 1.5 4.6	au ightarrow 3e 0.9 4.7	$ au \rightarrow 3e$ 0.5 4.9	*