Photophysical properties of porphyrin-single-walled carbon nanotube linked systems with various spacer lengths

Tomokazu Umeyama¹, Jinseok Baek¹, Hiroshi Imahori^{1,2}

¹ Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan ² Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 615-8510, Japan

Although the precise understanding of the intrinsic nature of the exciplex state with both excited state and charge-transfer characters is crucial for efficient formation of the long-lived charge-separated state, the information is extremely limited in comparison with the charge-separated state because of lack of suitable model systems and difficulty in creating such model systems.

We report herein unprecedented long-range observation of both formation and decay of the exciplex state in donor (D)bridge (B)-acceptor (A) linked systems. Zincporphyrins (ZnP) as a donor were tethered to singlewalled carbon nanotube (SWNT) as an acceptor through oligo(p-phenylene)s (ZnP-ph_n-SWNT) or oligo(p-xylene)s (ZnPxy_{*n*-1}-ph₁-SWNT) with

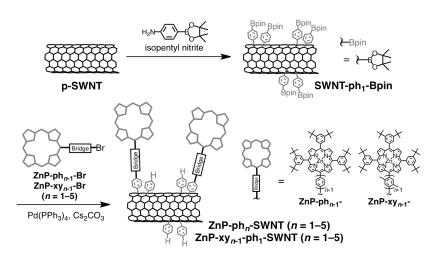


Figure 1. Synthesis of ZnP-ph_n-SWNT and ZnP- xy_{n-1} -ph₁-SWNT (n = 1 - 5).

systematically varied lengths (n = 1-5) to address the issue (Figure 1). Exponential dependencies of rate constants for the exciplex formation (k_{FEX}) and decay (k_{DEX}) on the edge-to-edge separation distance between ZnP and SWNT through the bridges were unambiguously derived from time-resolved spectroscopies. Distance dependencies (i.e., attenuation factor, β) of k_{FEX} and k_{DEX} in ZnP-ph_n-SWNT were found to be considerably small ($\beta = 0.10$ for k_{FEX} and 0.12 Å⁻¹ for k_{DEX}) compared to those for charge separation and recombination (0.2-0.8 Å⁻¹) in D–B–A systems with the same oligo(p-phenylene) bridges. The small β values may be associated with the exciplex state with mixed characters of charge-transfer and excited-states. In parallel, the substantially non-conjugated bridge of oligo(p-xylene)s exhibited larger attenuation values ($\beta = 0.12$ for k_{FEX} and 0.14 Å⁻¹ for k_{DEX}). These results provide deep insight into the unique photodynamics of electronically strongly coupled D–B–A systems involving exciplex.

[1] J. Baek, T. Umeyama, K. Stranius, H. Yamada, N. V. Tkachenko, and H. Imahori, J. Phys. Chem. C, 121, 13952-13961 (2017).