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First of all … 
• This talk aims at giving a rough picture of Pomerons and Reggeons 

to non-experts. (But I am not an expert, either. ) 
 

• Regge theory was developed long long time ago, and is not 
studied in standard Phd courses. But it is not a out-of-date 
framework, but is still useful in describing high-energy scattering 
in nonperturbative regime where perturbative QCD is hopeless.  
 

• Mathematical structure of scattering amplitudes in the Regge 
theory is of course correct, and is sometimes discussed also in 
other theories (such as string theory, conformal field theory, etc.) 
 

• Recently, “Regge-like theory” in QCD has been discussed.    



Plan 
• Pomeron as seen from experimental data 
• Properties of S-matrix and scattering amplitude 

(Cutkosky rule and Optical theorem) 
• Partial wave expansion and complex angular momentum 
• Regge pole 

 
        break 

 
• Reggeon and Pomeron 
• Froissart bound  
• Beyond 1 Pomeron : revisiting experiments  
• Pomerons in deep inelastic scattering (DIS) 



Reference 
• P.D.B.Collins, “An Introduction to Regge Theory and high energy physics” 

(Cambridge, 1977)  everything is written 

 

• J.R.Forshaw, D.A.Ross, “Quantum Chromodynamics and the Pomeron” 
(Cambridge, 1997)  very nice summary in the first section 

 

• V.Barone, E. Predazzi, “High Energy Particle Diffraction” (Springer 2002)  

       very good with full of examples  

 

• 小平治郎 『場の理論としての量子色力学』 1998 

  Chapter 11 “Regge理論” 未公開講義ノートだが、大変良い  

       
• 板倉数記 原子核研究 59巻 No.1 (2014年9月号) キーワード解説 

     『レッジェ理論とレッジェ極』、『ポメロン』 は、本講演を4ページにまとめたもの 
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Pomeron Pomer on 

Isaak Pomeranchuk (1913-1966) 

“on” for particles 
 
Same as Fermion, Boson  



Where is Pomeron? 
Total cross section in hadron scattering 
     does not show “resonance” peak  
         in high energy region 

INCREASE of total hadronic 
cross section  
due to Pomeron exchange 
 
 
 
Donnachie-Landshoff, 1992 
 Fit to data below 100GeV 
 can be represented by  
    Pomeron  +  Reggeon 
   aP(0)=1.08 > 1,  aR(0)=0.55 < 1 
 
Pomeron leading term,  
                      same for pp, ppbar 
Reggeon  subleading term  
  aR(0)=0.55  coincides with Regge slope 
  Can equally describe  
   p+p, p-p, g p scatterings 
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LHC(pp)@8TeV 
TOTEM, 2013 

ALICE 

ATLAS 

CMS 

Cosmic  
Ray data 

Precise data from accelerator 
experiments available 



What is interesting? 

 

Proton charge radius  r = 1 fm  
Geometric X sec. pr2 = 3 fm2= 30 mb 
Shadow scattering 60 mb    (1 fm2 = 10 mb) 
2 x radius (proton・proton) 120mb 
 

 Expanding proton with increasing energy? 
 Something interesting will happen  
      at energy larger than LHC 
 

1TeV              10TeV 

Total pp cross section 

60 



What is pomeron? 

Something like particle which is responsible 
for describing increasing total cross section 
of hadron-hadron scattering with increasing 
energy 

Answer at this point 



Or Regge limit 

      ``total scattering energy” ≫ ``typical momentum scale in reaction” 

 

 

 

 

 

 

 

 

 

High-energy limit 

W2 =(p+q)2  Square of total scatt. Energy of g-p 

Q2 =-q2   virtuality of photon 
 

        W2  >>  Q2 

 

Or,   x ~ Q2 /(W2 + Q2 ) 0 

Deep inelastic scattering 
of proton 
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g* 

Proton 

 

Cf) Bjorken limit:  x=Q2/2pq fixed 
    Q2  ∞ ,   2pm

 qm ~ W2 + Q2  ∞  

s=(pa+pb)
2 

s >> |t| 

Hadron-hadron scattering 

t=(pa - pc)
2 
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c 
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Square of total scatt. Energy in CM frame 

Square of momentum transfer 

(``total scattering energy” ≫ ``particle masses” is implicit) 



Comparison between typical momentum scale μ and  ΛQCD  
 

    ΛQCD ： momentum scale where QCD coupling diverges ~  200-400MeV 

         ex) 1 loop  

 

 
 

                     hard (perturbative)         μ ≫ ΛQCD   

               soft (nonperturbative)     μ ＜ ΛQCD  

Soft vs Hard 

 

～ 
ex) 
• total cross section is non-perturbative (Optical theorem relates it to forward amplitude t=0)     
• DIS cross section 
 

     large Q2 → can be computed perturbatively (factorization: separation btw soft and hard) 

     small Q2  → soft nonperturbative scattering btw a g (or vector meson) and a proton 
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History of high energy scattering 

Pre-QCD 
1943 Heisenberg         proposal of S-matrix theory  
1956  Pomeranchuk      Pomeranchuk theorem 
1958 Mandelstam       relativistic S-matrix theory (Mandelstam variable) 
1959 Regge          proposal of Regge pole in Quantum Mechanics 
1961 Chew-Frautschi relativistic Regge theory completed → soft Pomeron  
           → later,  dual resonance model, Veneziano amp, string theory 
 

After-QCD 
  1970’s   QCD is established    
  1976-78  BFKL  high energy scattering in QCD (LO-BFKL equation) 
              “hard Pomeron”     ( measured at HERA around 1993) 
  ~2000       NLO-BFKL completed  later its resummation  
 

  1983   GLR(Gribov-Levin-Ryskin) first discussion about saturation. Modification of BFKL 
  1986   Mueller-Qiu  nonlinear correction to DLA(small-x limit of DGLAP)  
  1994   McLerran-Venugopalan model: effective theory for fast moving nucleus 
  2000   Iancu, McLerran, etc.  Reformulation of GLR from MV model and beyond  
                 JIMWLK equation,  BK equation(LO) renormalization group 

                                        Color Glass Condensate （2001 Geometric scaling at HERA） 
                                                                                      (2004 RHIC forward dAu) 
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We need “Regge theory” 

• Pomeron is a special case of Reggeons that are described by 
Regge theory 

 

• Not based on quantum field theory (perturbative description 
abandoned) 

 

• Based on S-matrix for hadronic degrees of freedom 
 

• Constrain the possible form of scattering amplitudes by 
imposing several postulates on S-matrix 
 

• Pre-QCD physics. But must be explained by QCD in future 



Mandelstam variables   ;     Lorentz inv. 
 
                
 
 

                                                                                                                                       only two of them are  
                                                      independent 

Kinematics  

s = (p1+p2)
2 

t = (p1 – p3)
2 
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u = (p1 – p4)
2 

of particles with masses mi , momenta pi
m 
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Represent S-matrix and scattering ampulitudes  
                             in terms of  s and t :      S(s,t),   A(s,t) 

Consider 22 scattering 

…
 …

 

n 

1 

2 Can be generalized to  
case involving n particles 



S matrix 
Fundamental physical objects carrying the information of scattering 
Can be related to cross section 

S-matrix is a matrix whose elements are defined below  
and contains all the information of the scattering process 

One can introduce an operator S by representing outstate |b, out 〉 in 
terms of bases of instate.    〈 b, out | a, in 〉 = 〈 b, in | S | a, in 〉  

inaoutbSba ,|,

before 

t = - ∞  
after 

t = ∞  

ina,|

|a,in 〉 （|b,out 〉） is an asymptotic state at  t  -∞  (t  ∞ )  and respectively 
form complete sets. Describe on-shell free hadrons 

outb,|



Three postulates on S matrix 

(I) S matrix is Lorentz invariant. 

(II) S matrix is unitary. S+ S = S S+ = 1  

           (conservation of probability: P(a  anything)=1 ) 

(III) S matrix is an analytic function of complexified 
Lorentz invariants and has singularity structure 
allowed by unitarity. 

S matrix is a function of Lorentz invariant variables 
(Mandelstam variables) :  S(s, t) for 2-to-2 scattering 

Cutkosky rule for scattering amp. →  Optical th. (total X sec) 

S matrix has a structure with simple poles + cuts .  

requirements/conditions 



Unitarity of S matrix 
Transition probability from a state  a  to  b   

baabbaba SSSP 

 
2 （no summation over  

  repeated indices） 

Representing the unitarity condition S+ S = S S+ = 1 by elements  
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S+ S  = 1    probability of going to any state from state  a  is unity  

S S+ = 1    probability of getting a final state a which came from  

                    an initial state b  yields unity if one sums up all the possible  

                    initial state b.  

States are supposed to form orthogonal normalized complete sets 



Consequence of postulate (II): Cutkosky rule 

Scattering amplitude  A(s,t) 
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Sum over all the possible states (c)  

 
 
 
        impose 
      on-shell condition 

= 2 Im 

a  b 

+ + ……. 
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Summation over possible states 

Cutkosky rule 

Consequence of postulate (II): Cutkosky rule 



Optical Theorem 
Put a = b  in Cutkosky rule 
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Probability of a state a going to any state ← total X sec 

a=b ZERO momentum transfer  t = 0 forward scattering 
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)0,(Im  
1

~ tsA
s

total
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Postulate(III)：Singularity structure 
Cutkosky rule:  n particles in intermediate states  evaluate each contribution 

 

 

 

1particle state 
 

2 particle state 

 
n particle state 

= 2 Im 

a  b 

…
 S 

Bound state with mass  

M <2m → simple pole 
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Continuous  for s > (2m)2  and there is a cut  
with s = 4m2  being the branch point 

Continuous for s > (nm)2 and there is a cut with s = (nm)2  being the branch point 

s 

M2 4m2 9m2 

From the discussion in u channel 

Typical singularity  
structure on  
complex s plane 

All the particles have  
the same m 

Assume particles flow in the s-channel 

M 



Contribution of 2 particle state (1/2) 
2 particle state is possible when the total energy s satisfies  (2m)2 < s < (3m)2  

      (we impose energy conservation to the intermediate state) 

on-shell 
Momenta of internal state 

k2 integral is straightforward with 

E1, E2 are energies  
of p1, p2  



Contribution of 2 particle state (2/2) 

Using the explicit form in COM frame,  

The integral over the momentum yields (k=|k1|) 

  --


222

22

2

4

1
2 m

s

s
mks

mk

dkk


Therefore, contribution of 2 particle state is 
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This structure comes from energy conservation 

 s > (nm)2     for n particle state 



Contribution of meson exchange 
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A meson with mass M, spin J  is exchanged in t channel  
m 

For large s, using the asymptotic form of Legendre function 

J

meson stsA ~),( This is the amplitude when a particle  
with spin J is exchanged in t channel. 
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On the other hand, the amplitude should have the form of propagator in t-channel  

Intuitively, contribution of angular momentum J is  
Introduced by exchange of spin-J particle  



Legendre polynomial and function 
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However, we can consider the region | z | > 1 , and  non-integer n  (even complex) 
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Complex angular momentum 
• Partial wave expansion 

   

 

 

 

 
 

• Complexification of angular momenta (Sommerfeld-Watson transf) 

Scatt. amp. f( ) in nonrel-QM can be expanded wrt eigenstates of ang. mom. 
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Regge pole 
Change of contour l Assume that partial wave amplitude  

has a pole in Re l > 0  
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Amplitude will have t dependence 
Ignore signature for simplicity 

“Regge pole” 

Regge pole governs high energy behavior of scatt. amplitude. 
 

  s dependence enters only through zt=1+2s/t  in  Pa( zt ) . 
  In Regge limit s/|t|  ∞ , line integral behaves as 1/s1/2   and can be ignored. 
         
 
 
  Picking up one Regge pole having the largest  Re a, one finds 

 

 
     can be viewed as exchange of spin a  particle in t-channel. 
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Regge pole 
If the Reggeon exchanged in t channel is a physical particle with 

     spin  J  mass   M 
the following must hold for the angular momentum a(t).  

JMt  )( 2a

r, w 

f2, a2 

w3, r3 

“Regge trajectory” 
   a(0) = 0.55   < 1       intercept 
      a’  = 0.86 GeV –2  

 slope 

Regarding the pole in complex angular momentum space 
as the pole in complex t plane 

tt ')0()( aaa 

Giving a relation btw J  and  M  

JMM  22 ')0()( aaa

on-shell condition 
In t-channel 



More about Regge trajectories 
Mesons having different quantum numbers show 
The same trajectory 

Universal behavior of slope a’  implies universal  
Picture of “string tension” 

“string model” of hadrons 
A string with length 2R and tension  connecting massless  
quark/antiquark is rotating with angular momentum  

 
Centrifugal 
force 

Attractive  
force 



Baryonic Regge trajectories 
baryon exchange diagram 

Slope is similar to mesons 
Intercept seems negative? 
 



Regge phenomenology 

Contribution of Reggeon to the scattering amplitude 

where 

By using these, total cross section and elastic cross section are given as 



Pomeron 
Total cross section 
 

 

If the intercept is smaller than 1 as that for Reggeon, the total X sec decreases with s  ∞  

(forward neutron production in pp collision is suppressed) 
 

Pomeranchuk theorem (1956) 
For the same target, the total cross sections of “particle”projectile and of 
“antiparticle” projectile are the same in the limit of high scattering energy.  

Foldy-Peierls (1963) 
If the cross section does not decrease in the limit  s ∞, then the scattering 

process is given by an exchange of an object having the same quantum  

numbers as the vacuum (isospin 0, charge conjugation even (charge 0)) 

 

Experimentally, increase of hadron-hadron total cross sections are measured 
    Other trajectory different from the Reggeon ( a(0) < 1 ) would exist!!!  

              This is called Pomeron ! ( a(0) > 1 )  
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Pomeron exchange and total cross section 

P I 

a a 

anything 

Related to multiple gluon production in BFKL Pomeron （Reggeized two gluon exchange） 



Pomeron vs exp. data (standard picture) 

pp/ ppbar cross sections 
Donnachie-Landshoff, 1992 
energy dependence can be  
represented by Pomeron + Reggeon  

 aP(0)=1.08 > 1,  aR(0)=0.55 < 1 
 
Pomeron term is the leading contribution  
and common for pp and ppbar.  
 
aR(0)=0.55 of the Reggeon is the same  
as that of Regge trajectory 
Can also describe p+p, p-p, g p scatterings 

The exchange having aP(0)=1.08  

is called ``soft Pomeron” 

Fit region 

From the elastic differential  
cross section of pp and ppbar 

  a’P= 0.25 GeV-2 



Universal picture? 
The Pomeron picture with the exchange having the same quantum numbers  
as the vacuum MUST equally apply to other hadron scattering processes. 



Pomeron as a physical particle? 
 Experimental measurements suggest a picture that something with 

the same quantum numbers as the vacuum is exchanged. 

Pomeron trajectory 
   from experiments 

 

 

   If it is really a physical particle, it should satisfy 
 

 

 

     particle with Spin 2 , M=1.9GeV  ・・・・ f2(1950) ,  JPC=2++  ??  

                                   or unknown glueball?    

  But it is not clear if we can regard Pomeron itself as a real particle. 
      (Pomeron should appear in the kinematical region far away from the on-shell region) 
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Unitarity violation of ``1 Pomeron” picture 

Froissart bound 
     The power increase of total X sec due to 1 Pomeron exchange is 

TOO FAST and eventually violates unitarity of the scattering 
amplitude.     

 
     In fact, from the unitarity of the partial wave amplitudes, the following bound can be 

derived                                      
 
 
 
 

   The picture with 1 Pomeron exchange must be modified 
         In fact, multiple Pomeron exchange gives the same s dependence  
                            as the Froissart bound. (sometimes called Froissaron)  

 
     (Note) Since s0 is unknown, we cannot compare the bound with experimental data. Still, if 

we take a typical hadronic scale s0 ~ 1GeV2 , the bound gives extremely  

  large values. (typically total pp X sec is about 100 mb even at Cosmic Ray energy) 
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 (s0 is just a parameter) 

Froissart 1961, Martin 1966 



Heisenberg (1952) described high-energy nucleon-nucleon scattering 

as a collision of two shock waves of surrounding meson cloud!!  
 

Reaction occurs when the energy density of overlapping region exceeds the 
threshold of two pion creation. 

 

 

 
 

Can define maximum impact parameter bmax 

 

 
Leading to naïve geometric cross section (assuming satuation) 

 

 

 

Slow growth of cross section is due to increase of effective radius 

Intuitive picture of Froissart bound 

Total energy  
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Revisiting experimental data 
COMPETE Collab. 
Compared ln s, ln2 s (Froissart bound), sl (l=0.08) (1 Pomeron) 

ln2 s is the best fit (adopted by PDG) favored with data larger than 4GeV  

(NOTE) B is much smaller than that of the Froissart bound 

Thus this log2 behavior should not be identified with the unitarity effect. 

p/mp
2 = 62 mb 

B is independent of process 

h1  is the value of Reggeon 



• 1 Pomeron picture will violate unitarity and must break down at 
some large energy. So far, there is no problem. 
 

• Still, it makes sense to evaluate the effects beyond the 1 Pomeron 
exchange which should exist even though the energy is not very 
high.  

• Effects beyond 1 Pomeron exchange 

Beyond 1 Pomeron exchange  

Reggeon exchange ・・・・・・ Not important in the high energy limit, but  
                                                     necessary at experimentally accessible energy 
Multiple Pomeron exchange ・・・energy dependence similar to Froissart bound 

 
 
 
 
Pomeron interaction ・・・ important for diffractive scattering 



Pomeron interaction 
• Single diffractive event  

Can determine triple Reggeon vertex from diffractive data 
 
 At higher energies, multiple Pomeron exchange and Pomeron interaction 
     become important and modify the simple 1 Pomeron exchange picture. 
   (Reggeon Field Theory)  



Deep inelastic scattering of proton 
• Kinematics 

 

 
 
 

 

• F2 structure function 

W2 =(p+q)2    
square of total energy of g-p system  
 

Q2 =-q2  virtuality of photon 
 

           W2  >>  Q2 
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Regge limit in DIS: Small-x physics 

x

xQ
s

)1(2 -
 x :  Bjorken variable 

2Qs  x  0   “small-x physics” 

F2(x,Q2) shows slow increase with decreasing x ? 
 Can be confirmed in experimental data 
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Let us apply the 1 Pomeron exchange in the g*-p total X sec in the small x limit 

NO!!!! 
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                           steep rise! 
BFKL Pomeron (hard Pomeron), CGC 



Soft Pomeron vs hard Pomeron 
A closer look finds Q2 dependent exponent 
 

      Q2 
 0,  a-1  0.08 ,  large Q2 , a-1 increases  

F2 

x 

Small Q2 

Large Q2 



Q2-dependence of exponent 
)(2
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Soft Pomeron      hard Pomeron  



Instead of summary``what is pomeron?” 
Something like a particle which is responsible for describing 
increasing total cross section of hadron-hadron scattering. 

 

- Total cross sections of hadron-hadron scattering slowly increase with 
increasing scattering energy. 
- In the Regge theory (a mathematical framework of relativistic S-matrix), 
high-energy behavior of the scattering amplitude is determined by a pole in 
the complex angular momentum plane. This looks like an exchange of a 
particle-like object in t-channel.   
- In particular, an object having the same quantum numbers as the vacuum is 
called Pomeron and governs the high energy behavior of the total X section. 
Pomeron is used as a phenomenological description of the cross section.  
- A close inspection of the experimental data suggests deviation from the 1 
Pomeron exchange.  
- In deep inelastic scattering, different properties of Pomeron is measured, 
and is understood from QCD (hard Pomeron, QCD Pomeron).  


