Research on Superheavy Elements at RIKEN

New Result in Production and Decay of an Isotope, ²⁷⁸113, of the 113th Element

Kosuke Morita

Superheavy Element Laboratory RIKEN Nishina Center for Accelerator-Based Science, RIKEN

New Result in Production and Decay of an Isotope, ²⁷⁸113, of the 113th Element

Kosuke Morita

Superheavy Element Laboratory RIKEN Nishina Center for Accelerator-Based Science, RIKEN

Journal of the Physical Society of Japan 81 (2012) 103201

http://dx.doi.org/10.1143/JPSJ.81.103201

LETTERS

New Result in the Production and Decay of an Isotope, ²⁷⁸113, of the 113th Element

Kosuke Morita^{1*}, Kouji Morimoto¹, Daiya Kaji¹, Hiromitsu Haba¹, Kazutaka Ozeki¹, Yuki Kudou¹, Takayuki Sumita^{2,1}, Yasuo Wakabayashi¹, Akira Yoneda¹, Kengo Tanaka^{2,1}, Sayaka Yamaki^{3,1}, Ryutaro Sakai^{4,1}, Takahiro Akiyama^{3,1}, Shin-ichi Goto⁵, Hiroo Hasebe¹, Minghui Huang¹, Tianheng Huang⁶, Eiji Ideguchi^{7†}, Yoshitaka Kasamatsu^{1‡}, Kenji Katori¹, Yoshiki Kariya⁵, Hidetoshi Kikunaga⁸, Hiroyuki Koura⁹, Hisaaki Kudo⁵, Akihiro Mashiko¹⁰, Keita Mayama¹⁰, Shin-ichi Mitsuoka⁹, Toru Moriya¹⁰, Masashi Murakami⁵, Hirohumi Murayama⁵, Saori Namai¹⁰, Akira Ozawa¹¹, Nozomi Sato⁹, Keisuke Sueki¹¹, Mirei Takeyama¹⁰, Fuyuki Tokanai¹⁰, Takayuki Yamaguchi³, and Atsushi Yoshida¹

(Received August 29, 2012; accepted September 10, 2012; published online September 27, 2012)

An isotope of the 113th element, i.e., ²⁷⁸113, was produced in a nuclear reaction with a ⁷⁰Zn beam on a ²⁰⁹Bi target. We observed six consecutive α -decays following the implantation of a heavy particle in nearly the same position in the semiconductor detector under an extremely low background condition. The fifth and sixth decays are fully consistent with the sequential decays of ²⁶²Db and ²⁵⁸Lr in both decay energies and decay times. This indicates that the present decay chain consisted of ²⁷⁸113, ²⁷⁴Rg (Z = 111), ²⁷⁰Mt (Z = 109), ²⁶⁶Bh (Z = 107), ²⁶²Db (Z = 105), and ²⁵⁸Lr (Z = 103) with firm connections. This result, together with previously reported results from 2004 and 2007, conclusively leads to the unambiguous production and identification of the isotope ²⁷⁸113 of the 113th element.

KEYWORDS: new element 113, gas-filled recoil ion separator, α-decay chain

Periodic table of the elements (2012)

\searrow	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1																	2
1	Н		_															He
	3	4											5	6	7	8	9	10
2	Li	Be											В	С	Ν	0	F	Ne
	11	12	1										13	14	15	16	17	18
3	Na	Mg											Al	Si	Р	S	Cl	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	К	Са	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
_	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ва	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	ΤI	Pb	Bi	Ро	At	Rn
La	antha	anide		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
				La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Тb	Dy	Но	Er	Tm	Yb	Lu
				80	00	01	07	02	0/	05	96	07	02	00	100	101	102	102
	Acti	nide	•••		-50 Th	De	52	Nic			Circ	יי ער	<u>с</u> г	55				105
				AC	IN	Pa	U	мр	Pu	Am	Cm	ВК	C	ES	FM	IVIO	INO	Lľ
	87	88	89	104	105	106	107	108	109	110	111	112		114		116		
7	Fr	Ra	Ac	Rf_	Db	Sø	Bh_	Hs	Mt	Ds_	Rø	Cn_	113	FI_	115	LV.	117	118
			, .0								6.							
				S	upe	rhe	avy	ele	eme	nts	(SH	IES)				_		3

Pure Appl. Chem., ASAP Article doi:10.1351/PAC-REP-10-05-01 © 2011 IUPAC, Publication date (Web): 1 June 2011

Discovery of the elements with atomic numbers greater than or equal to 113 (IUPAC Technical Report)*

Robert C. Barber¹, Paul J. Karol^{2,‡,§}, Hiromichi Nakahara³, Emanuele Vardaci⁴, and Erich W. Vogt⁵

¹Department of Physics and Astronomy, University of Manitoba, Manitoba, R3T 2N2, Canada; ²Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA; ³Chemistry Department, Tokyo Metropolitan University, Tokyo 192-03, Japan; ⁴University of Naples "Federico II" and Istituto Nazionale di Fisica Nucleare, Napoli, Italy; ⁵TRIUMF, Vancouver, BC, V6T 1W5, Canada

Abstract: The IUPAC/IUPAP Joint Working Party (JWP) on the priority of claims to the dis-

covery of new elements 113–116 and 118 has reviseveral claims. In accordance with the criteria for the lished by the 1992 IUPAC/IUPAP Transfermium V subsequent IUPAC/IUPAP JWP discussions, it was collaborations share in the fulfillment of those crites synopsis of experiments and related efforts is prese

The Periodic Table has been evolving!

one end of nuclear chart 2010

Superheavy Element Study at RIKEN RIBF

Reactions studied at RIKEN-GARIS

Calculated threshold of fission after 1n emission

Masses of Beams & Targets Audi & Wapstra, Nucl. Phys A565, 1 (1993)

Masses of Compound Nuclei Myers & Swiatecki, Nucl. Phys. A601, 141 (1996)

Summary of ²⁰⁹Bi + ⁷⁰Zn experiment

period Beam En	ergy	2003/9/5 ~ 2 5.03 AMeV	012/8/18
	07	348 MeV at ta	rget half depth
Total Dos	e	1.35x10 ²⁰	
Target Th	lickness	1.3x10 ¹⁸ /cm ²	(0.45 mg/cm ²)
ϵ_{GARIS}		0.8	
σ(2-ev.)		2.2x10 ⁻³⁸ cm ²	
		22 ⁺²⁰ ₋₁₃ fb	
Irradiatio	n time	13274 Hours	(553 Days)
Beam Int	ensity	2.8x10 ¹² /s	(0.47 p-µA)
	J. Phys. Soc. Jpn	., Vol. 73 (2004) 259	3
	J. Phys. Soc. Jpn	., Vol. 76 (2007) 045	001

J. Phys. Soc. Jpn., Vol. **81** (2012) 103201

beamtime		irradiation time	beam dose/sum	number of observed events
year	month/day	[days]	[×10 ¹⁹]	
2003	9/5 - 12/29	57.9	1.24/1.24	0
2004	7/8 - 8/2	21.9	0.51/1.75	1
2005	1/20 - 1/23	3.0	0.07/1.82	0
2005	3/20 - 4/22	27.1	0.71/2.53	1
2005	5/19 - 5/21	2.0	0.05/2.58	0
2005	8/7 - 8/25	16.1	0.45/3.03	0
2005	9/7 - 10/20	39.0	1.17/4.20	0
2005	11/25 - 12/15	19.5	0.63/4.83	0
2006	3/14 - 5/15	54.2	1.37/6.20	0
2008	1/9 - 3/31	70.9	2.28/8.48	0
2010	9/7 - 10/18	30.9	0.52/9.00	0
2011	1/22 - 5/22	89.8	2.01/11.01	0
2011	12/2 - 12/19	14.4	0.33/11.34	0
2012	1/15 - 2/9	25.0	0.56/11.90	0
2012	3/13 - 4/17	33.7	0.79/12.69	0
2012	6/12 - 7/2	15.7	0.25/12.94	0
2012	7/14 - 8/18	32.0	0.57/13.51	1
Total		553	13.51	3

Table I. Summary of beamtime used.

Fig. 1. Two-dimensional plot of energy measured by PSD vs TOF measured using timing counters for the run (time period = 10.8 h), in which the decay chain was observed. Events detected by only strip #7 of PSD are shown. A point corresponding to the implantation event is shown by a circle with an arrow. Loci corresponding to projectile-like particles (A \approx 70) and target-like particles (A \approx 209) are also shown.

 262 Db(Z = 105): $b_{\alpha}/b_{sr} = 67\%/33\%$. $T_{1/2} = 34 \pm 4$ s 8.450 ± 0.020 MeV (75%), 8.530 ± 0.020 MeV (16%), 8.670 ± 0.020 MeV (9%) $^{258}Lr(Z = 103):$ $b_{\alpha} = 97.5\%$. $T_{1/2} = 3.92^{+0.35}_{-0.42}$ s 8.565 ± 0.025 MeV (20%), 8.595 ± 0.010 MeV (46%), 8.621 ± 0.010 MeV (25%), 8.654 ± 0.010 MeV (9%) $^{254}Md/^{254m}Md(Z = 101)$:

 $b_{\rm EC} = 100\% / 100\%,$ $T_{1/2} = 10 \pm 3 / 28 \pm 8 \, {\rm min}$

 254 Fm(Z = 100): b_{α} = 99.94%, $T_{1/2}$ = 3.240 ± 0.002 h 6.898 ± 0.003 MeV (0.0066%), 7.050 ± 0.002 MeV (0.82%), 7.150 ± 0.002 MeV (14.2%), 7.192 ± 0.002 MeV (84.9%). α_5

 $E_{\alpha} = 8.63 \pm 0.06 \text{ MeV}$ $\tau = 126 \text{ s (present)}$ $\tau = 56^{+77}_{-21} \text{ s } \rightarrow T_{1/2} = 39^{+53}_{-14} \text{ s (three events)}$

α₆ E_α = 8.66 ± 0.06 MeV τ = 3.78 s → T_{1/2} = 2.6 + 12 - 1.1 s (one events)

no signal : E(X-ray of ²⁵⁴Fm)_{max} = 142 keV Energy threshold of PSD = 800 keV

 α_{7-1} $E_{\alpha} = 7.26 \pm 0.07 \text{ MeV}$ $\tau = 3.96 \text{ h P}_{acc} = 0.43$ α_{7-2} $E_{\alpha} = 7.18 \pm 0.06 \text{ MeV}$

 $\tau = 6.42 \text{ h P}_{\text{acc}} = 0.70$

 250 Cf (Z=98): b_a = 99.92% $T_{1/2}$ = 13.08 y

²⁰⁹Bi + ⁷⁰Zn
$$\rightarrow$$
 ²⁷⁸113 + *n*
 α_4 : ²⁶⁶Bh (Z = 107)

$$1^{st}$$
 $E_{\alpha} = 9.08 \pm 0.04$ MeV, $\tau = 2.47$ s 2^{nd} $E_{\alpha} = 9.77 \pm 0.04$ MeV, $\tau = 1.31$ s 3^{rd} $E_{\alpha} = 9.39 \pm 0.06$ MeV, $\tau = 5.26$ s

mean-life = 3.0
$$^{+4.2}$$
 $_{-1.1}$ s \rightarrow $T_{1/2}$ = 4.3 $^{+6.1}$ $_{-1.6}$ s

Cf:

$${}^{248}Cm + {}^{23}Na \rightarrow {}^{266}Bh + 5n$$

 ${}^{266}Bh (Z = 107)$

 E_{α} = 9.05 — 9.23 MeV, τ > s


```
    <sup>209</sup>Bi(<sup>70</sup>Zn, n)<sup>278</sup>113 experiment completed on Oct. 1, 2012.
    Study <sup>208</sup>Pb(<sup>76</sup>Ge, n)<sup>283</sup>114(Fl) reaction (under discussion).
    Start <sup>248</sup>Cm(<sup>54</sup>Cr, 3n)<sup>299</sup>120 experiment (in collaboration with GSI group).
    <sup>248</sup>Cm(<sup>48</sup>Ca, 3n)<sup>293</sup>Lv
    <sup>248</sup>Cm(<sup>50</sup>Ti, 3n)<sup>295</sup>118
    <sup>248</sup>Cm(<sup>51</sup>V, 3n)<sup>296</sup>119
```

New isotope search of the heaviest nuclei and <u>detailed</u> spectroscopy with cold and hot fusion reactions.

Mass measurement of the heaviest nuclei with m-TOF system coupled to GARIS (Wada-san's group)

Study of heavy ion transfer reaction with GARIS for the study of neutron rich nuclei around N=126 region.

Try to measure X-ray from evaporation residues (in collaboration with W. Henning).

Developing FPD detector system for α - γ -e coincidence experiment

Collaborators (2006 -)

RIKEN Nishina Center <u>H. Haba</u>, H. Hasebe, <u>D. Kaj</u>i, <u>K. Katori</u>, <u>Y. Kudou</u>, T. Ohnishi, <u>K. Ozeki</u>, <u>K. Morimoto</u>, <u>A. Yoneda</u>, A. Yoshida,

> *Tokyo University of Science* <u>T. Sumita</u>, <u>K. Tanaka</u>, J. Chiba

Saitama University <u>T. Akiyama, R. Sakai, S. Yamaki</u>, T. Yamaguchi

> *Tohoku University* T. Suda, <u>H. Kikunaga</u>, T. Shinozuka

JAEA H. Koura, S. Mitsuoka, K. Ooe, <u>N. Sato</u>, A. Toyoshima, K. Tsukada, Y. Wakabayashi

> *Niigata University* S. Goto, M. Murakami, M. Murayama, Y. Kanaya, H. Kudo,

> > YITP Kyoto University <u>T. Ichikawa</u>,

University of Tsukuba A. Ozawa, K. Sueki

Yamagata University Y. Fujimori, K. Mayama, T. Mashiko ,S. Namai, M. Takeyama, F. Tokanai,

Center for Nuclear Science, University of Tokyo E. Ideguchi

Osaka University Y. Kasamatsu, Y. Kitamoto, Y. Komori, T. Kuribayashi, K. Matsuo, D. Saika, A. Shinohara, T. Takabe, Y. Tashiro, T. Yoshimura

Kanazawa University T. Nanri, D. Suzuki, I. Yamazaki, A. Yokoyama

Thank you very much for your kind attention!