# Rare Isotope Beams in the Americas - Present and Next Generation Facilities

Georg Bollen Michigan State University Facility for Rare Isotope Beams





## Rare Isotope Beams in the Americas Present and Next Generation Facilities

#### Outline

- University based facilities, local user facilities
- Major national user facilities
- Next generation facilities under construction
- Summary



## RIBRAS at São Paulo Nuclear Physics Open Laboratory

- 8 UD tandem Pelletron accelerator
  - Continuous beams: p, d, Li, C, O, Si, ..., Cu
  - Energies 2-5 MeV/A
- Under installation
  - 10 MeV/A superconducting LINAC
  - Will make RIBRAS unique
- RIBRAS Rare Isotope Beam Production
  - Dual-solenoid for production and separation of rare isotopes (similar to TwinSol at Notre Dame)
  - Seconday beams <sup>8</sup>Li, <sup>6</sup>He, <sup>7</sup>Be, <sup>8</sup>B, <sup>10</sup>B, ... with rates of 10<sup>4</sup>-10<sup>6</sup> /s
- Experimental Program
  - Elastic scattering and transfer reactions, for example <sup>6</sup>He on <sup>9</sup>Be, <sup>27</sup>Al, <sup>51</sup>V and <sup>120</sup>Sn targets
- International user group





# LBNL 88" Cyclotron



 Nuclear structure, astrophysics, heavy element studies, fundamental interactions, symmetries, and technology R&D

#### Berkeley Gas-filled Separator (BGS)

- » Workhorse for superheavy element synthesis and study
- » Upgrade underway for direct mass number measurement for SHE
  - Confirmation of present assignments.
  - Gas catcher after BGS combined with mass separator+ low-background counting station
- Next-generation Gamma Ray Energy Tracking Array (GRETINA)
  » Used for transactinide studies after BGS
  » Now experiment campaign at NSCL
  » Next - ATLAS

I.-Y. Lee



• VENUS

» 3<sup>rd</sup> generation ECR ion source as needed for FRIB



## **RESOLUT** at the John D. Fox Accelerator Laboratory at FSU

ATE IN THE INFORMATION OF A STATE OF A STATE

- 8.5 MV Tandem + 8 MV Linac
  - <sup>1</sup>H 17 MeV/u ... <sup>40</sup>Ca: 5 MeV/u
- RESOLUT In-flight Radioactive Beam Facility
  - SC RF-Resonator combined with high acceptance magnetic spectrograph
  - Mass 6-30, 1-2 nucleons off stability
- Nuclear Structure, Nuclear Astrophysics with high-resolution γ-spectroscopy, reaction studies

ss selection

- ANASEN Active Target Detector System developed in collaboration with LSU
  - First experiments performed

Experiment

Also planned to be used at ReA at NSCL

Solenoid



-MIS-2012,

#### T-REX (TAMU Reaccelerated Exotics) at Texas A&M University Cyclotron Facility





#### Upgrade

- K150 cyclotron as driver for production of radioactive species
  - high intensity stable isotope beams
- K500 cyclotron as post-accelerator
- Light-ion guide and heavy-ion guide
- ECR charge booster

#### **New Experimental Developments**

- Penning Trap for decay studies
- Heavy Element Chemistry in a gas catcher



# Nuclear Science Laboratory NSL

- 10MV FN Pelletron tandem and 1MV JN VdG accelerators
- 5 MV HI Pelletron accelerator (being installed)
- TWINSOL rare isotope beam facility
- St. George recoil separator
  - Basis for SECAR design for ReA at NSCL/FRIB
- Nuclear Astrophysics
  - reactions for stellar burning, nova and X-ray burst explosions, neutron sources for s-process
- Nuclear Structure and Reaction Physics
  - Halo studies on light systems, lifetime measurements, nuclear structure near particle thresholds



## ISAC Rare Isotope Beam Facility at TRIUMF





## Advanced Rare Isotope Laboratory (ARIEL)





- New complementary e-driver for photo-fission to substantially expand the rare isotope beam program with:
  - 3simultaneous beams (more beam hours)
  - new beam species
  - increased beam development capabilities
- 50 MeV / 10 mA e-beam superconducting linac
- New proton beamline
- New target stations and front end

## **ARIEL Fission Yields**



#### 50 MeV 10 mA electrons onto converter & UC, target.



needed to leverage the high fission yields

G. Bollen EMIS-2012, Matsue 2012, Slide 10

## **ARIEL construction underway**





## ATLAS Facility at Argonne National Laboratory

Stable beams at medium intensity and energy up to 10-20 MeV/u



#### CARIBU – Californium Rare Ion Breeder Upgrade Neutron-rich beam source

# PRODUCTION: <sup>252</sup>Cf source inside gas catcher

- Thermalizes fission fragments
- Extracts all species quickly
- Forms low emittance beam
- SELECTION: Isobar separator
  - Purifies beam
- DELIVERY: beamlines and preparation
  - Switchyard
  - Low-energy buncher
  - Charge breeder
  - Post-accelerator ATLAS





## CARIBU extracted beam rates (at 50 keV)



CPT Penning trap mass measurements underway First Coulomb excitation experiments performed

## **NSCL and FRIB at MSU**

- FRIB will be the world's premier rare isotope user facility, a national user facility for the U.S. Department of Energy Office of Science
- Until FRIB is operational, NSCL is the US's flagship user facility for rare-isotope research; funded by the U.S. National Science Foundation







## National Superconducting Cyclotron Laboratory





ReA3 will be commissioned in 2013; ReA6 will be completed by end of 2015

#### Rare Isotope Beams at NSCL Enable Pre-FRIB Science

More than 1000 RIBs have been made – more than 860 RIBs have been used in experiments



World-unique Opportunities with Fast, Stopped, (and soon) Reaccelerated Beams



## **Facility for Rare Isotope Beams**

- Rare isotope production via inflight technique with primary beams up to 400 kW, 200 MeV/u uranium
- Fast, stopped and reaccelerated beam capability
- Upgrade options
  - 400 MeV/u for U
  - ISOL production Multi-user capability



#### World-leading next-generation rare isotope beam facility



Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

## **FRIB Beams Will Enable New Discoveries**



## The Path to FRIB

- FRIB being built under cooperative agreement between DOE and MSU
  - Total Project Cost \$680M
  - Includes \$94.5M contribution from MSU
- Technical scope of FRIB project
  - 400 kW heavy ion linac, 200 MeV/u for U
  - Target facility and fragment separator with 400 kW beam power capability

#### "External" contributions to FRIB laboratory

- Beam stopping systems, beam lines, reaccelerator
- Experimental areas and experimental equipment
- FRIB technical scope with be realized while NSCL continuous to operate as national user facility prior to integration into FRIB
  - Pre-FRIB science + minimum shutdown for transition to full FRIB facility



#### **FRIB Project**

Project Manager: T. Glasmacher Accelerator Systems: J. Wei Experimental Systems: G. Bollen Conventional Facilities: B. Bull

#### FRIB/NSCL Laboratories Director: C.K. Gelbke Chief Scientist: B.M. Sherrill

#### Facility for Rare Isotope Beams Layouts Frozen, Civil Design Completed





## FRIB Site Preparation Getting Ready for Civil Construction

 FRIB site preparations on track for starting civil construction in 2013





# Watch "movie" at http://frib.msu.edu/



Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

## FRIB Accelerator Systems SRF Driver Linac

- Accelerate ion species up to <sup>238</sup>U with energies of no less than 200 MeV/u
- Provide beam power up to 400kW
- Energy upgrade to 400 MeV/u for uranium by filling vacant slots with 12 SRF cryomodules





# **FRIB Rare Isotope Production Facility**



Shielding design compatible with 400 MeV/u energy upgrade



Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

## FRIB Experimental Systems Fragment Separator

- Production of rare isotope beams with 400 kW beam power using light to heavy ions up to <sup>238</sup>U with energy ≥ 200 MeV/u
  - Rotating graphite target

F. Pellemoine







Michigan State University

#### Fragment Separator and Target Facility Design Meets 400-kW Power Requirement



Remote Handling Integrated in Target Facility Design

- Hands-on access after beam-off
- Target change design goal <1 day</li>





Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

### FRIB Fragment Separator Isotope harvesting provisions included in design

- Produce a rare isotope beam for a primary user, for example <sup>200</sup>W from a <sup>238</sup>U primary beam
- At the same time up to 1000 other isotopes are produced that could be harvested and used for other experiments or applications.
  - Catcher/ion source systems like PALIS@BIGRIPS
  - Harvesting from beam dump water loops

| <sup>238</sup> U <sup>136</sup> Xe <sup>86</sup> Kr <sup>48</sup> Ca |
|----------------------------------------------------------------------|
| Isotope Half Life Activity [mCi]                                     |
| <sup>28</sup> Mg 0.87 d 7 36 190 2100                                |
| <sup>32</sup> Si 132 y 0.1 0.4 2 25                                  |
| <sup>44</sup> Ti 60 y 0.1 0.8 5 0.9                                  |
| <sup>48</sup> V 16 d 80 385 2200 80                                  |
| <sup>67</sup> Cu 2.6 d 200 100 950                                   |
| <sup>85</sup> Kr 10.8 y 50 2 1700                                    |
| <sup>211</sup> Rn 14.6 h <b>230</b>                                  |
| <sup>221</sup> Rn 0.42 h <b>4</b>                                    |
| <sup>223</sup> Rn 0.39 h 1 beam dump cooling loop                    |
| <sup>225</sup> Rn 270 s 2 after 1 year of operation                  |
| <sup>225</sup> Ac 10 d 170                                           |



W. Mittig

# **Experimental Areas and Equipment at FRIB**

- Reconfigurable areas for fast, stopped and reaccelerated beam experiments
  - 47,000 sq ft when FRIB starts
  - Additional upgrade space of more than 60,000 sq ft
- Experimental Equipment

FRI

- Equipment at NSCL (existing or under development)
  - » S800, SeGA, MoNA, MoNA-LISA, LENDA, NSCL-BCS, LEBIT, BECOLA, AT-TPC, SECAR, CAESAR, ...
- Equipment available in the community and movable (existing , under development, or planned)
  - » GRETINA, GRETA, ANASEN, CHICO, Nanoball, ...







#### FRIB Users Organization Over 1300 Users Ready for Science

- Users are organized as part of the independent FRIB Users Organization
  - FRIBUO has >1300 members (92 US Colleges and Universities, 10 National Laboratories, 58 countries) as of Dec 2012
  - Chartered organization with an elected executive committee FRIBUO has 20 working groups on experimental equipment









FRI



## Summary

- Rare Isotope Science in the Americas builds on strong user communities, world-class facilities based on ISOL and in-flight production, and a broad range of smaller facilities
- Rare Isotope Beam facilities in the Americas complement existing facilities wordlwide
- FRIB and ARIEL under construction will be word-leading facilities for Rare Isotope Science

Thanks for material to Alinka Lépine-Szily, Robert Janssens, Rainer Kruecken, Guy Savard, Ingo Wiedenhover

