Proton polarization in photo-excited aromatic molecule at room temperature

Satoshi Sakaguchi

Kyushu University

XVIth Internathonal Conference on Electromagnetic Isotope Separators and Techniques Related to their Applications (EMIS2012)

2012/12/7

Collaborators

<u>RIKEN</u>

- T. Uesaka (Nishina Center)
- S. Wada, Y. Urata, T. Ogawa (Advanced Science Institute)

<u>Kyushu Univ.</u>

- T. Teranishi
- <u>CYRIC, Tohoku Univ.</u> **T. Wakui**

<u>Toho Univ.</u>

T. Kawahara

<u>CNS, Univ. of Tokyo</u> **T. L. Tang**

Application to low-energy RI beam experiment

- Proton polarization @room temperature
 Increase of laser power
 - Optimization of laser pulse structure

Polarization study of unstable nuclei

- Direct reactions induced by polarized light ions
 Powerful probe for studying manifestation of spin-dependent interactions in nuclei
 - Reactions
 - $(\overrightarrow{p}, p'), (\overrightarrow{p}, n)$ • $(\overrightarrow{p}, d), (\overrightarrow{d}, p), (\overrightarrow{p}, pN)$ • $(\overrightarrow{p}, p), (\overrightarrow{d}, d)$

spin-isospin response

spin-parity of single particle/hole states spin-orbit potential

Method

Radioactive ion beam + polarized target (key element)

Physics of unstable nuclei × Reaction of polarized light ion

Polarized proton target for RI-beam exp.

Solid pol. proton target at 0.1 T

 High electron polarization in photo-excited aromatic molecule

A. Henstra et al. Phys. Lett. A 134 (1988) 134.

73 % 🔿 🚃

4 (1988) 134. Laser excitation

Solid polarized proton target @CNS/RIKEN

Effectiveness of polarized target

Elastic scattering p ⁻⁶He, ⁸He at 71, 200 MeV/u

T.Uesaka, S.S. et al., PRC 82 (2010) 021602(R). S.S., Y. Iseri et al., PRC 84 (2011) 024604.

 Shallow and diffuse spin-orbit potential

- Knock-out reaction
 - □ ^{14, 22, 24}O (*p*,2*p*), (*p*,*pn*) at 250 MeV/u

S. Kawase, T. Uesaka et al., Experiment carried out in 2012

• Change of spin-orbit splitting ΔE_{ls}

Application to low-energy RI beam experiment

Proton polarization @room temperature
 Increase of laser power
 Optimization of laser pulse structure

New possibilities with low energy RI-beam

- Resonant proton scattering
 - Low-lying single-particle resonances in *p*-rich nuclei
 Information by spin-asymmetry measurement
- Transfer reaction
 - **–** Spectroscopy with (\vec{p}, d) reaction
 - Unambiguous Jⁿ assignment
- Polarization transfer to stopped RI
 - Cross-polarization technique: applicable to any nucleus
 - Magnetic moment measurement by β-NMR method

Resonant proton scattering

- Roles of spin asymmetry
 - \square J^{*m*} determination
 - Projectile w/ non-zero spin
 - Sensitive to configuration mixing
 - Information for extremely wide resonances
- Feasibility demonstration
 ¹³N+p scattering
 Monte-Carlo simulation
 P_p = 20%, 10 mg/cm², 10⁵ pps × 3 days

Toward low-*E* exp. with polarized protons

- Requirement for target
 - Vacuum environment
 - Sublimates ×
 - ⊘→
 ⊘→
 ⊘ @ 300K O

- Applications:
- Hyper-resolution MRI
- Quantum computing

Challenge: High proton polarization at room temperature

- Current status of room-temp. polarization
 - Not easy to produce
 - **1.3%** (2005, Kyoto Gr.)
- M. linuma et al., Jour. Mag. Res. 175 (2005) 235.
- 5.7% (2009, Osaka Gr.) A. Kagawa et al., Jour. Mag. Res. 197 (2009) 9.
- ⇔ Insufficient for target use

Application to low-energy RI beam experiment

- Proton polarization @room temperature
 Increase of laser power
 - Optimization of laser pulse structure

For higher polarization

• Proton polarization P_p

$$P_p = \frac{A P_e}{A + \Gamma_i + \Gamma_t}$$

- P_e : Electron polarization
- A: Build-up rate
- Γ : Relaxation rate

- For higher build-up rate
 Laser power should be increased
 - ⇔ Not successful in previous studies
 (ex.) M. linuma et al., Jour. Mag. Res. 175 (2005) 235.

Higher laser power

- What is the problem?
 - High power
 - ⇒ High temperature
 - \Rightarrow Fast relaxation?
- Temperature control
 Keep constant temp.
 by cooling gas

Build-up rate A was enhanced by a factor of 3.

Polarization achieved

- Previous work (2004)
 - Polarization: 4.8%
 - Laser: 80 mW
 - No temp. control
- Present work (2012)

World-record polarization of 14.1% at room temp. by high power laser (1.5 W) and temp. control (10 °C). $(> 10^5 \times thermal)$

nol

15 [%]14.1% hery preliminal. Polarization 10 5 10 20 30 40 Build-up time [min.]

Application to low-energy RI beam experiment

- Proton polarization @room temperature
 Increase of laser power
 - Optimization of laser pulse structure

Use of pulse laser

Time structure of pulse

Evolution of electron polarization

 \Rightarrow Width of laser pulse should be shorter (if power = const.).

Enhancement of figure-of-merit ($A \times P_e$)

Shortening of pulse width

$$\Rightarrow AP_e: \times 2.4$$

Extending pulse interval

$$\Rightarrow AP_e: \times 1.3$$

Figure of merit AP_e can be enhanced by a factor of > 3.

How far can we go?

Pulse structure

- Short pulse width $(50 \rightarrow 1 \text{ us})$
- Long pulse interval (120 → 1000 us)
- High power

 $(1.5 \rightarrow 10 \text{ W})$

New laser @RIKEN ASI, (~2013)

S. Wada et al.

• Expected polarization $P_p = \frac{A P_e}{A P_e} = 14\%$

⇒ **35%** (pulse structure optimization)

⇒ **50%** (+ high power & temp. control)

Room-temp. polarization of > 30% is within sight !!

Summary

- Proton polarization at room temperature will open up new possibilities: studies of unstable nuclei with polarized protons at low incident energies.
- World-record polarization of 14.1% was achieved with high

power laser and temp. control.

 Optimization of laser pulse structure will enable us to obtain > 30% polarization.

