Identification and Separation of RI Beams by BigRIPS Separator at RIKEN RI Beam Factory

Naoki Fukuda, T. Kubo, T. Ohnishi, H. Takeda, D. Kameda, H. Suzuki, N. Inabe RIKEN Nishina Center

1. Brief overview of the BigRIPS in-flight separator
2. Particle identification
3. Two-stage separation
4. Summary

Layout and major features of BigRIPS Separator

> Large acceptances

- Comparable with spreads of in-flight fission at RIBF energies: $\pm 50 \mathrm{mr}, \pm 5 \%$
$>$ Superconducting quadrupoles having a large aperture
- Pole-tip radius $=17 \mathrm{~cm}$, pole tip field $=2.4-2.5 \mathrm{~T}$
$>$ Two-stage separator scheme
$>2^{\text {nd }}$ stage with high resolution
- Particle identification without measuring TKE \leftarrow charge states

Parameters:

$\Delta \theta= \pm 40 \mathrm{mr}$
$\Delta \phi= \pm 50 \mathrm{mr}$ $\Delta p / p= \pm 3 \%$
$B \rho=9 \mathrm{Tm}$
$L=78.2 \mathrm{~m}$
STQ1-14:
Superconducting
Q triplets
D1-D6:
Dipoles (30 deg.)
F1-F7: Focuses

STQ
Superferric Q

PID power for fission fragment

High enough to well identify charge states thanks to the track reconstruction!

G2 setting in J. Phys. Soc. Jpn. 79 (2010) 073201.
A / Q spectrum for $Z r$ isotopes ($Z=40$)
r.m.s. A/Q resolution: 0.035 \%

Particle identification (PID) scheme at BigRIPS

TOF- $B \rho-\Delta E$ method with track reconstruction \rightarrow Improve $B \rho$ and TOF resolution

Measure TOF, $B \rho$,	$\Delta E @ 2^{\text {nd }}$ stage
+isomeric γ-rays	$Z \leftarrow d E / d x=f(Z, \beta)$
$Z, A / Q$	$A / Q=B \rho / \gamma \beta m_{u}$

Particle identification

TOF, trajectories $(B \rho), \Delta E \rightarrow Z, A / Q$
t Target

Trajectory reconstruction (F3-F5 case)

$$
\begin{array}{r}
F 5 x=(x \mid x) F 3 x+(x \mid a) F 3 a+(x \mid \delta) \delta \\
F 5 a=(a \mid x) F 3 x+(a \mid a) F 3 a+(a \mid \delta) \delta \\
a=\theta: \text { angle }
\end{array}
$$

Measured F5x, F5a, F3x
Transfer matrix $(x \mid x),(x \mid a), \ldots$ \rightarrow deduce δ, F3a
$B \rho=B \rho_{0}(1+\delta)$

For $Z=40$ isotopes produced by in-flight fission of a ${ }^{238} \mathrm{U}$ beam at $345 \mathrm{MeV} / \mathrm{u}$

Our goal for trajectory reconstruction

Final goal is to perform the trajectory reconstruction only with the COSY calculation.

- Higher resolution in an online PID
- Accurate and efficient delivery of RI beams

A / Q resolution with COSY matrices

In-flight fission of a ${ }^{238} \mathrm{U}$ beam at $345 \mathrm{MeV} / \mathrm{u} . \Delta p / p=6 \%$
Only $1^{\text {st }}$ order \quad Sn isotopes

Ideal $\sigma_{\mathrm{A} / \mathrm{Q}}=0.03 \%$
estimated by the detector resolutions. (Poster session by D. Kameda)

The present COSY calculation does not reproduce sufficiently the actual matrix.

Experimental determination of transfer matrices

 NISHINA$$
\begin{aligned}
& F 5 x=(x \mid x) F 3 x+(x \mid a) F 3 a+(x \mid \delta) \delta \quad \text { 1 }{ }^{\text {st }} \text { order matrix elements from F3 to F5 } \\
& F 5 a=(a \mid x) F 3 x+(a \mid a) F 3 a+(a \mid \delta) \delta
\end{aligned}
$$

	Experiment	COSY	
$(x \mid x)$	1.020 ± 0.103	0.9266	
$(x \mid a)$	$\mathbf{0 . 2 1 9} \pm 0.043$	-0.0047	$\mathrm{~mm} / \mathrm{mrad}$
$(a \mid x)$	0.333 ± 0.200	-0.0197	$\mathrm{mrad} / \mathrm{mm}$
$(a \mid a)$	1.018 ± 0.036	1.0793	
$(x \mid \delta)$	30.80 ± 0.50	31.67	$\mathrm{~mm} / \%$
$(a \mid \delta)$	-0.004 ± 0.001	0.015	$\mathrm{mrad} / \%$
Det.	0.966	1.000	

Improvement in A / Q resolution

In-flight fission of a ${ }^{238} \mathrm{U}$ beam at $345 \mathrm{MeV} / \mathrm{u} . \Delta p / p=6 \%$
$S n$ isotopes

COSY $1^{\text {st }}$ order matrices

Experimentally determined $1^{\text {st }}$ order matrices

Empirical determination of transfer map

\qquad
For $Z=50$ isotopes produced by in-flight fission of a ${ }^{238} \mathrm{U}$ beam at $345 \mathrm{MeV} / \mathrm{u}$.
To determine higher-order transfer matrix
Only $1^{\text {st }}$ order

Higher-order terms

A/Q

Including higher order

Achievement in A / Q resolution

Sn isotopes

F3a deduced from track reconstruction
Only $1^{\text {st }}$ order terms

History of charge-changing at F1, F3 and F5

 NiSishinaCharge-changing at materials at F1 and F3

Two-stage separation

- Two achromatic degrader stage

I : F0-F1(deg.) -F2
II : F3-F5(deg.) -F7

Achromatic degrader stage

Two-stage separation: example-1

 NISHINA${ }^{238} \mathrm{U} 345 \mathrm{MeV} / \mathrm{u}+\mathrm{Pb} 1.5 \mathrm{~mm}, \mathrm{Br}_{01}=7.3940 \mathrm{Tm}$
Remove charge state events.

F1 slit +-63 mm, F2 slit +-15 mm, F7 slit +-120 mm

F1 Al 3 mm (Wedge)
F1 Al 3 mm (Wedge)
SX on, Tuned for ${ }^{140} \mathrm{Te}^{52+}$
F5 Al 1.8 mm (Profile)
SX on, Tuned for ${ }^{140} \mathrm{Te}^{52+}$

F3x (mm)
F7x (mm)

Two-stage separation: example-2

Remove secondary reaction events.

Example: production of ${ }^{33} \mathrm{Al}$ using a ${ }^{48} \mathrm{Ca}$ beam at $345 \mathrm{MeV} / \mathrm{u}$ (with a 10-mm Be target)

Wedge degrader at the first stage only

Without energy degraders
$\mathrm{B} \rho=6.9627 \mathrm{Tm}$ $\Delta P / P=0.2 \%$
\qquad
TOF [ns] (F5-F7)

Wedge degrader at both stages

$$
15-\mathrm{mm} \mathrm{Al}
$$

wedge at F1

$$
10-\mathrm{mm} \mathrm{Al}
$$

wedge at F5
$\Delta P / P=6 \%$

Summary

- The performance of particle identification of RI beam by BigRIPS was presented.
The trajectory reconstruction improves the A / Q resolution significantly, which provides unambiguous particle identification including charge-states.
- The examples that demonstrates two-stage isotope separation were presented.
The contaminant events are well removed by the two-stage separation.

Thank you for your kind attention.

