

Identification and Separation of RI Beams by BigRIPS Separator at RIKEN RI Beam Factory

<u>Naoki Fukuda</u>, T. Kubo, T. Ohnishi, H. Takeda, D. Kameda, H. Suzuki, N. Inabe RIKEN Nishina Center

- 1. Brief overview of the BigRIPS in-flight separator
- 2. Particle identification
- 3. Two-stage separation
- 4. Summary

Dec. 3, 2012 @ EMIS2012, Matsue, Japan

Layout and major features of BigRIPS Separator

- Large acceptances
 - Comparable with spreads of in-flight fission at RIBF energies: ± 50 mr, $\pm 5\%$
- Superconducting quadrupoles having a large aperture
 - Pole-tip radius = 17 cm, pole tip field = 2.4 2.5 T
- Two-stage separator scheme
- 2nd stage with high resolution
 - Particle identification without measuring TKE charge states

High enough to well identify charge states thanks to the track reconstruction!

Particle identification (PID) scheme at BigRIPS

TOF-*B* ρ - ΔE method with track reconstruction \rightarrow Improve *B* ρ and TOF resolution

Particle identification

TOF, trajectories ($B\rho$), $\Delta E \rightarrow Z$, A/Q

eta determination by the simultaneous equations

TOF₃₇ = $L_{35}/\beta_{35}c + L_{57}/\beta_{57}c$ $B\rho_{35}/B\rho_{57} = (\beta\gamma)_{35}/(\beta\gamma)_{57}$ $\rightarrow \beta_{35}$ (1st half), β_{57} (2nd half)

Trajectory reconstruction (F3-F5 case)

 $F5x = (x \mid x)F3x + (x \mid a)F3a + (x \mid \delta)\delta$ $F5a = (a \mid x)F3x + (a \mid a)F3a + (a \mid \delta)\delta$ $a = \theta : angle$ Measured *F5x*, *F5a*, *F3x* Transfer matrix (x|x), (x|a), ... \rightarrow deduce δ , *F3a*

 $B\rho = B\rho_0(1 + \delta)$

Final goal is to perform the trajectory reconstruction only with the COSY calculation.

- Higher resolution in an online PID
- Accurate and efficient delivery of RI beams

A/Q resolution with COSY matrices

In-flight fission of a ²³⁸U beam at 345 MeV/u. $\Delta p/p = 6\%$

Ideal $\sigma_{A/Q} = 0.03\%$ estimated by the detector resolutions. (Poster session by D. Kameda)

The present COSY calculation does not reproduce sufficiently the actual matrix.

 $F5x = (x \mid x)F3x + (x \mid a)F3a + (x \mid \delta)\delta$ $F5a = (a \mid x)F3x + (a \mid a)F3a + (a \mid \delta)\delta$

1st order matrix elements from F3 to F5

|F3x| < 1 mm, |F3a| < 1 mrad

	Experiment	COSY	
(x x)	1.020 ± 0.103	0.9266	
$(x \mid a)$	0.219 ± 0.043	-0.0047	mm/mrad
(<i>a</i> <i>x</i>)	0.333 ± 0.200	-0.0197	mrad/mm
(a a)	1.018 ± 0.036	1.0793	
(x δ)	30.80 ± 0.50	31.67	mm/%
(a δ)	-0.004 ± 0.001	0.015	mrad/%
Det.	0.966	1.000	

In-flight fission of a ²³⁸U beam at 345 MeV/u. $\Delta p/p = 6\%$

COSY 1st order matrices

Experimentally determined 1st order matrices

Empirical determination of transfer map

To determine higher-order transfer matrix

For Z = 50 isotopes produced by in-flight fission of a ²³⁸U beam at 345 MeV/u.

Achievement in A/Q resolution

Sn isotopes

History of charge-changing at F1, F3 and F5

Two achromatic degrader stage

Achromatic degrader stage

Two-stage separation: example-1

²³⁸U 345 MeV/u + Pb 1.5 mm, Br₀₁ = 7.3940 Tm F1 slit +-63 mm, F2 slit +-15 mm, F7 slit +-120 mm

Two-stage separation: example-2

Remove secondary reaction events.

TOF [ns] (F5-F7) Wedge degrader at both stages

The performance of particle identification of RI beam by BigRIPS was presented.

The trajectory reconstruction improves the A/Q resolution significantly, which provides unambiguous particle identification including charge-states.

The examples that demonstrates two-stage isotope separation were presented.

The contaminant events are well removed by the two-stage separation.

Thank you for your kind attention.