. Physikalisches

Institut

The FRS Ion Catcher – A Facility for High-Precision Experiments With **Stopped Projectile and Fission Fragments**

W.R. Plaß^{1,2}, T. Dickel^{1,2}, S. Purushothaman², P. Dendooven³, H. Geissel^{1,2}, J. Ebert¹, E. Haettner¹, C. Jesch¹, M. Ranjan³, M.P. Reiter¹, H. Weick², F. Amjad², S. Ayet², M. Diwisch¹, A. Estrade², F. Farinon², F. Greiner¹, N. Kalantar-Nayestanaki³, R. Knoebel², J. Kurcewicz², J. Lang¹, I. Moore⁴, C. Nociforo², M. Petrick¹, M. Pfuetzner², S. Pietri², A. Prochazka², A.-K. Rink¹, S. Rinta-S. Rinta-Antila⁴, C. Scheidenberger², M. Takechi², Y. Tanaka², J.S. Winfield², M.I. Yavor⁵

> ¹ II. Physikalisches Institut, Justus-Liebig-Universität Gießen, Gießen, Germany ² GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany ³ KVI, University of Groningen, The Netherlands ⁴ University of Jyväskylä, Jyväskylä, Finland ⁵ Institute for Analytical Instrumentation, RAS, St. Petersburg, Russia

Motivation

- Cryogenic Stopping Cell for the Super-FRS at FAIR
- Multiple-Reflection Time-of-Flight Mass Spectrometer
- On-line Commissioning at the FRS Ion Catcher at GSI
- Conclusions and Outlook

Motivation: Low Energy Branch of the Super-FRS

LEB: High-precision experiments with in-flight separated exotic nuclei almost at rest, (production by projectile fragmentation / fission)

- universal and fast production
- high selectivity
- cooled exotic nuclei

MATS (Precision Measurements of very short-lived nuclei using an Advanced Trapping System for highly charged ions)

- High accuracy mass measurements
- In-trap conversion electron and alpha spectroscopy
- Trap assisted spectroscopy

LaSpec (Laser Spectroscopy)

- Collinear laser spectroscopy of ions and atoms
- β -NMR
- Resonance ionization spectroscopy

Eur. Phys. J. Special Topics 183 (2010) 1

Stopping Cell Principles

H. Weick et al., NIM B 164 (2000) 168

Stopping Cell Design

Cryogenic Operation

Operate He-filled stopping cell at cryogenic temperature (~70 K)

- Ultra-pure helium (freezing-out of contaminants)
 - Ideal for ion survival, 2+ charge state possible
 - No formation of molecules/adducts
- Reduced radial ion diffusion
- Reduced requirements for cleanliness \rightarrow easier, more flexible construction
- Operational reliability

P. Dendooven et al., NIM A 558 (2006) 580

S. Purushothaman et al., NIM B 266 (2008) 4488

High-density Operation

Use RF structure with small spacing (PCB-based RF carpet) to achieve high RF repelling field

- High stopping gas densities
- Less complex construction than RF funnels

Diameter: 250 mm Electrode spacing: 0.25 mm

Stopping Cell Design

W.R. Plaß et al., The FRS Ion Catcher, EMIS 2012, Matsue, Japan, December 2 – 7, 2012

Off-line Performance Study: Efficiency

Maximum survival and extraction efficiency for ²¹⁹Rn: ~ 30% Value is close to the assumed efficiency value for stopping the recoils as ions

P. Dendooven et al., NIM A 558 (2006) 580
S. Purushothaman et al, NIM B 266 (2008) 4488
S. Eliseev et al., NIM B 258 (2007) 479

Maximum pressure reached:

- 100 mbar at 90 K
- 330 mbar room-temperature equivalent
- 5.5 mg/cm² (He)

In the future: RF =150 V

→ 1 bar room-temperature equivalent achievable

Multiple-Reflection Time-of-Flight Mass Spectrometer

W.R. Plaß et al., The FRS Ion Catcher, EMIS 2012, Matsue, Japan, December 2 – 7, 2012

Performance Characteristics of the MR-TOF-MS

Universal mass spectrometer and mass separator (works for all elements, stable and unstable ions)

Mass Resolving Power

600,000

Mass Measurement Accuracy

~10-7

Measurement Duration

~10 ms

Sensitivity

~10 ions

Repetition Rate

up to 400 Hz

Transmission efficiency

up to 70%

Ion Capacity

> 10⁶ ions / s

Dynamic Range

> 10⁴

Further performance improvements are underway.

FRS Ion Catcher

Fragment separator FRS at GSI is the ideal instrument for testing Super-FRS developments

FRS Ion Catcher

- Test facility for the cryogenic stopping cell and the MR-TOF-MS
- Potential for high-precision experiments with stopped projectile and fission fragments
 - Direct mass measurements
 - Mass-selected decay spectroscopy

JUSTUS-LIEBIG-

Challenges

- Limited space at the final focal plane
- Setup cannot be installed permanently
- Short setup times

RSITÄT

Limited amount of beam time

W.R. Plaß et al., GSI Scientific Report 2010 (2011) p. 137

FRS Ion Catcher Experiment in Oct. 2011 / Jul. 2012

Setup at the FRS Ion Catcher

W.R. Plaß et al., The FRS Ion Catcher, EMIS 2012, Matsue, Japan, December 2 - 7, 2012

Stopping Cell Performance

Si detector spectrum of extracted projectile fragments

Stopping and Extraction Efficiencies

Range distribution of ²²³Th

W.R. Plaß et al., The FRS Ion Catcher, EMIS 2012, Matsue, Japan, December 2 – 7, 2012

Extraction Time

Extraction of ${}^{221}Ac (T_{1/2} = 52 \text{ ms})$

Pressure = 50 mbar, Temperature = 75 K DC field = 23 V/cm

Cleanliness of the Stopping Cell

Broadband mass spectrum taken with the MR-TOF-MS

- Molecular contaminants / adduct formation are not a problem for the cryogenic stopping cell
- Broadband mass spectrometry is a necessity for quick and reliable operation of a stopping cell

MR-TOF-MS Mass Measurements

Mass measurements of A = 211 and A = 213 isobars Example: 213 Rn (T_{1/2} = 19.5 ms)

First direct mass measurements of projectile fragments with an MR-TOF-MS

W.R. Plaß et al., The FRS Ion Catcher, EMIS 2012, Matsue, Japan, December 2 – 7, 2012

Conclusions and Outlook

Stopping cell for the Super-FRS and the FRS Ion Catcher

- Cryogenic, high density operation, suitable for exotic nuclei produced at relativistic energies
- Commissioned off-line and on-line
- Preliminary performance values: Stopping efficiency ~ 27% (²²³Th), Survival and extraction efficiency ~ 43% Extraction time ~ 25 ms

High-performance multiple-reflection time-of-flight mass spectrometer

- First direct mass measurements of projectile fragments
- High-resolution mass separator
- Diagnostics tool: identification and quantification

Further planned performance enhancements

- Stopping cell: Even higher densities
- MR-TOF-MS: Mass resolving power > 10^{6} (\rightarrow isomers?!)

Acknowledgements

FRS Ion Catcher / S411 Collaboration

F. Amjad², S. Ayet², T. Dickel^{1,2}, P. Dendooven³, M. Diwisch¹, J. Ebert¹, A. Estrade², F. Farinon². H. Geissel^{1,2}, F. Greiner¹, E. Haettner¹, C. Jesch¹, N. Kalantar-Nayestanaki³, R. Knoebel², J. Kurcewicz², J. Lang¹, I. Moore⁴, C. Nociforo², M. Petrick¹, M. Pfuetzner², W.R. Plaß^{1,2}, S. Pietri², A. Prochazka², S. Purushothaman², M. Ranjan³, M.P. Reiter¹, A.-K. Rink¹, S. Rinta-Antila⁴, C. Scheidenberger², M. Takechi², Y. Tanaka², H. Weick², J.S. Winfield², M.I. Yavor⁵

¹ II. Physikalisches Institut, Justus-Liebig-Universität Gießen, Gießen, Germany ² GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany ³ KVI, University of Groningen, The Netherlands ⁴ University of Jyväskylä, Jyväskylä, Finland ⁵ Institute for Analytical Instrumentation, RAS, St. Petersburg, Russia

Funding: Univ. Groningen and GSI, HGF and GSI (VH-NG 33), GSI F&E (GIMET2) **BMBF** (06GI185I, 06GI9114I)

(ernfusisch Versneller Instituu

university of

groningen

W.R. Plaß et al., The FRS Ion Catcher, EMIS 2012, Matsue, Japan, December 2 – 7, 2012