

European RIB facilities - status and

future Nilsson

Fundamental Physics Chalmers University of Technology FAIR-NUSTAR BR

GANIL/SPIRAL2: Nuclear Structure & reactions with high-quality, purity & intensity Stable-Ion and RIB in a perfectly suited energy range: from keV to 20 MeV/nucleon

M. Lewitowicz

NUclear STructure Astrophysics and Reactions

What are the limits for existence of nuclei? Where are the proton and neutron drip lines situated? Where does the nuclear chart end? How does the nuclear force depend on varying proton-to-neutron ratios? What is the isospin dependence of the spin-orbit force? How does shell structure change far away from stability? How to explain collective phenomena from individual motion? What are the phases, relevant degrees of freedom, and symmetries of the nuclear many-body system? How are complex nuclei built from their basic constituents? What is the effective nucleon-nucleon interaction? How does QCD constrain its parameters? Which are the nuclei relevant for astrophysical processes and what are their properties? What is the origin of the heavy elements?

zahl der Neutronen

+ A "buffet" of scientific questions common to RIB facilities worldwide!

How to get answers?

Study the properties and the behaviour of exotic nuclei!

Ground state mass, binding energy, spin, parity...

Excited states energy, spin, moments, transition probability...

Decay *lifetime, energy, modes...*

Reaction kinetics, energy, constituents...

Investigate systematically many isotopes far off stability

EMIS2012 Matsue Dec 2-7 2012

NuPECC Long Range Plan 2010

ts involvement incurrent an liteory initiatives. Strongly support advanced studies related to a Physics in Europe Strongly support advanced studies related to a Physics in Europe Strongly support advanced studies related to a Physics in between put of the tool of the area of the strong and the strong

S. Which complement each other SICE SCOPE and discovery poten

- GSI site in Damystadt, inclu ars the PANDA experiment using antiprotons to
- e and spectroscopy
- cting particles (hadrons), the NuSTAR radioactive seam facility to produce nuclei far
- leasure the properties of dense paryonic matter, and
- events of the provision of the provision
 - and activity activity LCE detector to expand the physics reach for power targets and radiation detection instrumenta
 - huclei at the S3 spectrometer, and ISOL radioactive
 - throut have transpationed programmes of the building and technical assessments for Strade of the Science of
 - ied, for example, at the DESIR facility.

The Nuclear Physics European Collaboration Committee is an Expert Committee of the European Science Foundation

2.2 Facilities Ro

We present below the road scale Nuclear Physics resea The time span ranges until t Facilities whose first phase are coloured in blue, future The ISOL facilities SPIF are designated to lead FAIR, EURISOL and design or R&D phas

SIS300

50 MeV/u Post_accelerato

NuPECC Long Range Plan 2010

Existing Facilities

Fully exploit the currently existing large-scale research infrastructures (listed below in north to south order) and perform limited-size upgrades to ensure the best use of the large investments made in the past:

- The lepton beam facilities (electron/positron, muon beams) ELSA in Bonn, MAMI in Mainz, COMPASS at CERN, DAΦNE at INFN-LNF Frascati, and the hadron beam facilities COSY at FZ Jülich and at GSI to perform detailed studies of the structure of hadrons such as protons and neutrons.
- The **heavy ion beam** facilities JYFL Jyväskylä, KVI Groningen, GSI Darmstadt, GANIL Caen, IPN Orsay, ISOLDE at CERN, INFN-LNL Legnaro and INFN-LNS Catania to study the structure of nuclei and fundamental interactions.
- The nuclear astrophysics underground accelerator LUNA at INFN Gran Sasso, and the exploration of advanced new facilities.
- The **ELENA** upgrade of the Antiproton Decelerator at CERN to study antimatter.

The Nuclear Physics European Collaboration Committee is an Expert Committee of the European Science Foundation

ysics in Europe

2.2 Facilities Roa

We present below the roadr

scale Nuclear Physics resear

The time span ranges until t

Facilities whose first phase

are coloured in blue, future

The ISOL facilities SPIR,

are designated to lead

at FAIR, EURISOL and t

design or R&D phase

. in future updates of the ESFRI list, based ccessful EURISOL Design Study in FP6. nical Design Study for intense radioactive s at ISOL@MYRRHA.

nical Design Study for a polarised proton-, **PAX**, and an electron-nucleon/ion collider, AIR.

hical Design Study for a high-energy elecn/ion collider, LHeC, at CERN. sion of Nuclear Physics programmes at the pose facilities ELI and ESS.

APPLICATIO

NuPECC Long Range Plan

SETTING SCIENCE

an Expert Committee of the European Science Foundation

NuPECC Long Range Plan 2010 Timeline RIB Facilities

Y. Blumenfeld

Existing research opportunities at GSI

EMIS2012, Matsue, Dec 2-7 2012

NUSTAR - The Project

Super-FRS	RIB production, identification and spectroscopy	The Approach
DESPEC	γ-, β-, α-, p-, n-decay spectroscopy	Complementary
HISPEC	in-beam spectroscopy at low and intermediate energy	measurements leading to consistent
ILIMA	masses and lifetimes of nuclei in ground and isomeric states	answers
LASPEC	Laser spectroscopy	The Collaboration
MATS	in-trap mass measurements and decay studies	> 800 scientists 146 institutes
R ³ B	kinematically complete reactions at high beam energy	38 countries
ELISE	elastic, inelastic, and quasi-free e-A scattering	The Investment
EXL	light-ion scattering reactions in inverse kinematics	73 M€ Experiments

NESTA

NUSTAR Week Kolkata Oct 2012

EMIS2012, Matsue, Dec 2-7 2012

SUPERconducting FRagment Separator

Talk by H. Geissel session I

NUSTAR - The Facility

LEB - Experiments with slowed and stopped beams (0 - ~150 MeV/u)

EMIS2012, Matsue, Dec 2-7 2012

PreSPEC-AGATA Set-up = Early Implementation of HISPEC

relativistic radioactive heavy-ions from the GSI Fragment Separator Up to 1GeV/A ²³⁸U, 50% v/c

I-Yang Lee session II

Advanced Gamma-ray Tracking Array (AGATA) up to $5 \times 2+10 \times 3 = 40$ segmented HP Ge-crystals

d ~ 20 cm ε_{Ph} ≈ 17% ΔE ≈ 0.4%

Lund-Cologne-York Calorimeter (LYCCA) A and Z particle-ID after secondary target by means of

- x,y tracking
- $\Delta E E$ (Si-Csl)

PreSPEC

- Δt (plastic)

MATS/LASPEC at the LEB

Common beam line for MATS/LaSpec Commissioning of the gas cell at the FRS (GSI)

Cryogenic

stopping cell

Diagnostics

unit

On-line test using ²³⁸U projectile fragments produced at 1 GeV/u at the FRS in October 2011 and July/August 2012

Beam from FRS

W. Plaß, session IV

- Ion survial and extraction efficiency ~ 50%
- Extraction times ~ 25 ms

- MR-TOF-MS
 commissioned on-line
- First direct mass measurements at GSI with an MR-TOF-MS, including ²¹³Rn (T_{1/2} = 20 ms)

Time-of-flight

mass spectrometer

Courtesy of W.R. Plaß

NUSTAR - The Facility – HEB ~0.3 – 1.5 GeV/u

Reactions with Relativistic Radioactive Beams

Status

Major achievements

Large-acceptance dipole GLAD

- Cold mass ready and inserted in test cryostat at Saclay
- Final cryostat in construction
- Delivery of magnet to GSI end of 2013

Neutron Detector NeuLAND

- Design finalized modular active detector of 3000 scintillator bars; 250x250x300cm³ active volume
- TDR submitted to FAIR in Nov 2011 (in review p
- Experiment with mono-energetic neutrons from deuteron breakup in Nov 2012: 200 modules (400 PM channels) in final desig

- Construction of 20% detector in 2013/2014

NUSTAR - The Facility

CR, NESR Storage Rings

EMIS2012, Matsue, Dec 2-7 2012

CR perspective view

Potential for new masses with ILIMA

Beyond MSV: Details of the EXL setup

Intermediate storage ring activities/"Green Paper"

ions from FRS

EMIS2012, Matsue, Dec 2-7 2012

Realization of an RIB electron collider setupThe ELISe experimentHaik S

Haik Simon • GSI / Darmstadt

Cryring at the ESR

Uniqueness of NUSTAR@FAIR — 2018-

Synchrotron-based in-flight RIB production for:

- High-energy Radioactive Beams (≤1.5 GeV/u)
 - Efficient production, separation, transmission and detection aided by Lorentz boost
 - Chemical universality (wrt. ISOL)
 - Access to also the heaviest nuclei without charge-state ambiguities
 - Large range of attainable reaction mechanisms
- Storage rings
 - Mass measurements and beam preparation/manipulation
 - Isomeric beams
 - Novel experimental tools

Combined with:

- Wide range of state-of-the-art instrumentation
 - Strong evolution from existing programmes

EMIS2012, Matsue, Dec 2-7 2012

- **Building permits**
- Site preparation
- Civil construction contracts
- Building of accelerator & detector components
- Completion of civil construction work
 - Installation & commissioning of accelerators and detectors
- Start Data taking

8

9

First beam in 1983

STABLE BEAMS

- from C to U
- energies up to 95 A.MeV
- intensities up to 10¹³ pps (3 kW)
- •up to 4 beam simultaneously

RIB production schemes

- in-flight method : SISSI, LISE since 1985
- •ISOL method : SPIRAL 1 since 2001

Up to 10000 hours of stable and radioactive beams per year 600 users/year (40% outside of France)

Staff 260 (29 physicists)

Flerov Lab (Dubna): ACCULINNA-2: a new in-flight separator at U-400M

SPIRAL 1 upgrade – New RIB

1+/n+ ionisation scheme

Metallic beams from a FEBIAD ion source

Hot target

P. Delahaye, O. Bajeat, session III

Existing GANIL facility & SPIRAL2 under construction

Caen, France

Phase 1: High intensity stable beams + Experimental rooms (S³ + NFS) **Phase 2:** High-intensity low-energy (DESIR) & post-accelerated Radioactive Ion Beam facility

ISOL Rare Isotope Beams at SPIRAL 2

SPIRAL 2: Advanced ISOL RIB facility

SPIRAL 2: Experiments with RIB at low cross sections and very exotic nuclei at few MeV/nucleon

ISOL RIB beams:

- high intensity, optical quality & purity Versatility:

- light & HI, high-intensity stable-ion & RIB

- Multi-beam capabilities,
- Months of beam-time
- World-class arrays & detectors

Story - Galer - Provide Revision Plancase

œ) ())

Basse-Normandie

Consel Garánal

CAENA

Caeniamer

CAPACITIES

GANIL/SPIRAL 2 facility: status & outlook

DESIR experimental hall & associated detectors

Timeline GANIL & SPIRAL2

laboratoire commun CEA/DSM SDI 2 CNR5/IN2P3

CERN-ISOLDE today

Scope of HIE-ISOLDE

HIE-ISOLDE aims at increasing the energy of these RIB up to 10A MeV and their intensity by a factor 10

Energy Upgrade:

The HIE-ISOLDE project concentrates on the construction of the SC LINAC and associated infrastructure in order to upgrade the energy of the postaccelerated radioactive ion beams to **5.5 MeV/u in 2014** and **10 MeV/u by 2016** Continuous target – ion source development, improvement in ionoptical properties

> T. Stora, session III D. Fink, session III

Intensity Upgrade: The design study for the intensity upgrade, also part of HIE-ISOLDE, starts in 2011, and addresses the technical feasibility and cost estimate for operating the facility at 10 kW once LINAC4 and PS Booster are online.

Increased beam quality: ISCOOL

Increased beam quality: design studies for HRS

Staged energy upgrade

HIE STAGE 2B WITH CHOPPER LINE

Phase 2: Experimental hall (10 AMeV 2016)

TSR@ISOLDE

Installation of TSR@ISOLDE

	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Funding												
Building construction work												
Building infrastructure												
disassembly of TSR at MPIK												
Transport to CERN												
Assembly of TSR@ISOLDE												
Power and Electronics												
Begin Commissioning												
IKS, KU Leuven												

Mark Huyse– IKS, KU Leuven

The SPES choice for ISOL

<u>Driver:</u>

'Commercial' cyclotron

Production Target:

<u>NEW CONCEPT</u> Multi-foil UCx direct target designed to reach 10^{13} f/s

Post Accelerator:

Normal conductive RFQ (new development) & Alpi existing complex

Second generation ISOL facilities in Europe (UCx target)

Production and study of neutron-rich nuclei

	Primary beam	Power on target	UCx target (UCx grams)	Fission s-1	Reacceler ator	Nominal energy AMeV A=130
HIE ISOLDE upgrade	p 1-1.4 GeV - 2 μA	0.8 kW	Direct (150g)	4-10 ¹²	SC Linac	5-10
SPIRAL2	d 40 MeV 5mA	200 kW	Converter (4000g)	10 ¹³ 10 ¹⁴	CIME Cyclotron	5
SPES	p 40 MeV 200 μA	8 kW	Direct (30g)	10 ¹³	ALPI SC Linac	10

EMIS2012, Matsue, Dec 2-7 2012

SPES Schedule November 2012

	2012	2013	2014	2015	2016	2017
Authorization to operate and safety		UCx auth	orization			
ISOL Targets construction and installation						
Building Construction	building project					
Cyclotron Construction & commissioning	in	schedule	+			
Alpi up-grade & pre-acceleration						
Design of RIB transport & selection (HRMS, Charge Breeder, Beam Cooler)						
Construction and Installation of RIBs transfer lines and spectrometer						
Complete commissioning and first exotic beam						

A precursor to SPIRAL2: ALTO@IPN Orsay (F)

10 μ A, 50 MeV electron beam on UCx target Approved to run by safety authorities

Niche facility: IGISOL@JYFL (FI)

EURISOL: An Ultimate ISOL Facility for Europe A Short History

- 2000: The Idea to Build an Ultimate ISOL facility for EUROPE is born (B. Jonson-A. Mueller- J. Vervier)
- 2001-2004: EURISOL RTD led by J. Vervier in 5th framework program: Conceptual Design
- 2005-2009: EURISOL Design Study led by G. Fortuna and Y.Blumenfeld in 6th framework program
- 2010: Endorsed by NuPECC as highest long term priority for low energy nuclear physics in Europe.

EURISOL (Green field)

Multi-MW fission target

Accelerated ¹³²Sn yields (per second) (fission factories only)

10 ⁵	4.5 MeV/u	(now)
10 ⁶	3 MeV /u	(now)
5.10 ⁴	10 MeV/u	(2010)
107	5 MeV/u	(2010)
10 ⁶	14 MeV/u	(2013)
10 ⁸	10 MeV/u	(2014)
5.10 ⁸	5 MeV/u	(2015)
5.10 ⁸	9 MeV/u	(2015)
2.10 ⁹	7 MeV/u	(2015)
3.10 ⁷	100 MeV/u	(2019)
10 ¹²	150 MeV/u	(2025)
	10^{5} 10^{6} 5.10^{4} 10^{7} 10^{6} 10^{8} 5.10^{8} 5.10^{8} 5.10^{8} 2.10^{9} 3.10^{7} 10^{12}	10 ⁵ 4.5 MeV/u 10 ⁶ 3 MeV /u 5.10 ⁴ 10 MeV/u 10 ⁷ 5 MeV/u 10 ⁸ 10 MeV/u 5.10 ⁸ 5 MeV/u 5.10 ⁸ 9 MeV/u 2.10 ⁹ 7 MeV/u 3.10 ⁷ 100 MeV/u 10 ¹² 150 MeV/u

Y. Blumenfeld

EMIS2012, Matsue, Dec 2-7 2012
Secondary Fragmentation of Fission Fragments at EURISOL

EMIS2012, Matsue, Dec 2-7 2012

NuPECC Long Range Plan 2010 Timeline RIB Facilities

EMIS2012, Matsue, Dec 2-7 2012

Y. Blumenfeld

The MYRRHA ADS project at SCK•CEN

ISOL@MYRRHA - Concept

+ ISOL facilities – reality check…

- "Who said the yields are (only) a function of beam power?"
 T. Stora, session III
- "Develop two elements/year" J. Lassen, session V

	ϵ_{delay}	probability of survival against radioactive decay during
		the time needed to extract the ion from the target-ion source system
	ϵ_{ion}	ionization efficiency
$= \sigma N_{target} \Phi \epsilon$	ϵ_{trans}	efficiency of mass analysis and transport to the experimental set-up
var gev	$\epsilon_{cool-bunch}$	cooling and bunching efficiency
	$\epsilon_{breeding}$	charge-state breeding efficiency
	$\epsilon_{accelerator}$	efficiency of the post-accelerator
	ε	total efficiency: the product of the above mentioned terms

EMIS2012, Matsue, Dec 2-7 2012

Y. Blumenfeld, T. N., P. Van Duppen, Physics Scripta, acc. for

Conclusions

 The European landscape of RIB infrastructures is heterogeneous but coherent

Leading in-flight and ISOL will be available for decades

 "Internally consistent" in longrange planning

 Competitive and complementary on a global scale

Completion times an issue!
 Instrumentation efforts are matching

Thanks:

- Yorick Blumenfeld (EURISOL)
- Jürgen Gerl (FAIR)
- Leonid Grigorenko (ACCULINNA-2)

III ISTANIAN III

- Mark Huyse (HIE-ISOLDE)
- Marek Lewitowicz (SPIRAL-2)
- Gianfranco Prete (SPES)
- Haik Simon (FAIR)
- Martin Winkler (FAIR)
- Helmut Weick (FAIR)
- ··· for sharing slides and information
- ••• and for your attention!