High power target and beam dump system for BigRIPS fragment separator

Koichi Yoshida BigRIPS Team RIKEN Nishina Center

- RIBF accelerator system consists of a linac and four cyclotrons. RRC, IRC, SRC
- ➤ Maximum energy is ~350 MeV/u for heavy ions up to U ions.
- Goal beam intensity is 1 pµA (6 x 10¹² particles/sec) Max. beam power 83 kW Available Beam intensity: Beam energy = 345 MeV/n (*250 MeV/n)
 ¹⁴N* 400pnA (1.4kW) ⁴⁸Ca 415pnA (6.9kW) ¹²⁴Xe 27pnA (1.2kW)
 ¹⁸O 1000pnA (6.2kW) ⁷⁰Zn 100pnA (2.4kW) ²³⁸U 12pnA (1.0kW)

Beam Spot and Power Density

Beam Power(^{238}U 345MeV/n,1p μ A=83kW) is dissipated in a target and a beam dump.

Target

Beam Spot Size:

<mark>o ~1mm</mark> (fwhm)

Target Thickness :

Optimum thickness $\sim 1/3$ of the Range. Material:

Be, C, W. Pb, etc. Melt. Point 1284, 3600, 3382, 328 °C

Beam Power in Target (Be 1/3 Range)

Prim.Beam 238 U ~ 48 Ca ~ 12 C 1pµA Trg.Thick 4.4 ~ 17.2 ~ 47.9 [mm] Be Trg. Δ E 19.7 ~ 3.2 ~ 0.9 [kW/1pµA] in ϕ 1mm 25.1 ~ 4.1 ~ 1.1 [GW/m²] in volume 5.7 ~ 0.2 ~ 0.02 [kW/mm³]

•Beam Dump

placed inside and exit portion of D1 magnet Beam Spot Size, Power Density

varied as RI beam setting. R= $B\rho_{beam}$ / $B\rho_{separator}$ for the case of ²³⁸U 345MeV/n with 4.4mm Be target,

Highly efficient method of water cooling

Tilted Wall

Cooling tubes with high heat transfer coefficient

Heat transfer coefficient by JAERI formula J. Boscary et al. Fusion Engineering and Design 43 (1998) 147

High-power water-cooled beam dump for BigRIPS using swirl tubes and screw tubes (maximum beam power ~100 kW)

Curved surface suffers high heat flux.

Side-wall beam dump

Side-Wall Beam Dump

Exit Beam Dump

Projected Beam Power Density and ANSYS Simulation

Heating the prototype beam dump by a 1.5 kW CO_2 -leaser beam

We have examined the cooling capability of a swirl tube with irradiating an expected heat density and spot size, up to 70 MeV/m² and 4 mm ϕ .

Swirl tube: Cu-Cr alloy outer 14 mmø, inner 8mmø Swirl ribbon: Inconel, pitch 24mm/180° Water: 12m/s, 1 MPa

Beam Dump Temperature for ²³⁸U 345MeV/n 8.3pnA

Exit-Dump is operated with water of 13°C, 0.7MPa, and 2.6m/s. (Design: 1MPa, 10m/s)

Estimated beam spot at dump Heat load : 522W

ANSYS simulation: Temperature increase 15.0-13.0 = 2 °C (not bad, although large ambiguity)

-Two rotating target units and one target ladder (fixed target) are mounted on the side flange.
-The side flange can be carried out by the maintenance cart for maintenances.

Rotating

target

Ladder target and rotating target

Rotating target Disk target : for High-power beam

*Size : φ30cm
*Material : Be, W
*Step shaped edge
20,15,10 mm thick
for N, Ca, Ar beams
10, 7, 5 mm thick
for Kr, Xe, U beams

← Be : 20,15,10 mm thick

Target ladder (fixed target)

*Diameter : ~ 20 mm *Thickness : 1 ~ 20, ~ 60 mm

Ladder target : for Low-power beam

Taper–shape targets are utilized for better thermal contact.

The water way is cut in the ladder.

T>200 deg.

Beam-spot temperature measurements

(1) Infrared Fiber Scope

(2) IR thermal image camera

Fixed target (mounted on ladder) ; temperature data & ANSYS Calculation

((Cylindrical model)) analytical model

Tr1 : Beam Spot Temp. = Tr2 + Qin*Ln(r2/r1) /(2πκLtg) Qin = Ibeam * dE ∝ dE / Ltg

ANSYS calculation Modeling: whole ladder

Heat transfer coefficient:

water-ladder: hw turbulence flow 1.5m/s 8kW/m²K Ladder-target:hc typical CPU Heat sink 10kW/m²K

Be 15mm

I beam [puA]

Rotating disk target ; temperature data

ANSYS (FEM code) simulation

Cable connections at Removable flange unit

2010

Power & signal cables: Multi-contact connector

Summary

- The target system and the beam dump system which cope with ²³⁸U 1pµA beam (83kW) have been designed and constructed. Features are described.
- The target and beam dump are operated without severe trouble although available beam intensity is less than1/10 of goal intensity.
- Evaluations of the temperature of target and beam dump at a current beam intensity are important to prove the thermal performance of the target and the beam dump at the high beam intensity.
- Improvement of the maintenance system is progressing .