

New developments of the in-source spectroscopy method at RILIS/ISOLDE

On behalf of York-KU Leuven-Gatchina-Mainz-Manchester-Bratislava-Liverpool-ISOLDE collaboration

2nd – 7th December 2012 Matsue, Japan **EMIS 2012**

Outline of Talk

- Introduction to laser spectroscopy of atoms
 - Observables: Isotope Shifts and Hyperfine Structure
 - Laser spectroscopy of exotic isotopes at ISOL Facilities
- In-Source Resonance Ionization Spectroscopy (RIS)
 - Isotopes of interest
 - Technical requirements and considerations
 - ISOLDE RILIS In-source RIS setup
 - New developments:
 - o Lasers, ion source, detectors, data acquisition
- Recent measurements (2011, 2012)
 - Emphasis on measurements that relied on the latest technical developments
- Outlook

Laser spectroscopy of atoms

The origin of the isotope shift

Isotope shifts have two components:

Mass Shift

change in reduced mass of electron

• Volume or Field Shift change in size of the nucleus

The *Field Shift* is directly proportional to the change in nuclear mean square charge radius, $\delta < r^2 > .$

Analysis of the shift provides information on the nuclear size and shape – even for short-lived (radioactive nuclei):

$$\begin{array}{c} \delta \langle r^2 \rangle = \delta \langle r^2 \rangle_{\rm sph} + \langle r^2 \rangle_{\rm sph} \frac{5}{4\pi} \delta \langle \beta_2^2 \rangle \\ {\rm volume} \qquad \qquad {\rm deformation} \end{array}$$

Practical considerations for measuring the Isotope Shift

information if the mass shift is small \rightarrow heavier elements

(electron density at the nucleus) are important and are easier for ground state transitions. Transitions involving s electrons have larger field shifts – higher

Element	Transition	Mass Shift (MHz)		Field shift	Doppler
		Normal	Specific	(MHz)	broadening
₂ He	2s – 3p	35000	8000	-1.4	3300
₁₁ Na	3s – 3p	550	200	-10	1400
₇₀ Yb	6s – 6p	20	<20	-1500	500

Atomic number, Z

Heavy elements: useful results can be obtained from Doppler-broadened spectra Light and medium mass elements: Doppler-free methods of laser spectroscopy are required

Hyperfine structure

Laser spectroscopy of radioisotopes - status

Regions of interest

• Shape coexistence at and around closed proton and/or neutron shells (and subshells):

Potential Energy Surface for 186Pb

A. Andreyev et al., Nature 405 (2000) 430

"Shape coexistence in atomic nuclei" K. Heyde and J.L. Wood, Rev. Mod. Phys. (2011)

Regions of interest

In-source laser spectroscopy

- Efficient ionization schemes with a suitable spectroscopic transition is needed
- Flux/Fluence conditions → Short pulse lasers (5-50ns) with ~0.1-10mJ/pulse
- Duty cycle consideration: High repetition rate (>10kHz).
- Laser line-width for spectroscopic transition should be less than the Doppler broadened transition line-width (~1-2GHz for A > 150)
- Hugely varying production rates 0.1/s \rightarrow 100pA!
 - Requires multiple measurement approaches
- Isobar suppression
 - Either at the ion source or at the detection setup

G. D. Alkhazov et al. NIM B69 (1992) 517

V.N. Fedoseev *et al.* NIM B266 (2008) 4378

U. Koester et al. Nucl. Phys. A 701 (2002) 441

In-Source RIS at ISOLDE/CERN

100 mm 30 SP0000 25 lassing efficiency (%) SP1000 SP1111 20 15 10 5 750 850 900 700 800 950 wavelength (nm) "A complementary laser system for ISOLDE RILIS"

S Rothe et al: Journal of Physics: Conference Series 312 (2011) 052020

The RILIS Ti:Sa lasers

Pump laser: Nd:YAG (532 nm), Photonics Industries Ltd. DM60 Repetition rate: 10 kHz Pulse length: 180 ns Power: 60 W

Ti:Sa lasers: Line width: 5 GHz Pulse length: 30-50 ns

Wavelength tuning range (6 mirror sets):

- Fundamental (ω) **690 940** nm (5 W)
- 2nd harmonic (2ω) 345 470 nm (1 W)
- 3rd harmonic (3ω) **230 310** nm (150 mW)
- 4th harmonic (4ω)
 205 235 nm (50 mW)

The Dual Etalon Narrow Linewidth TiSa

Reduction of linewidth from >5 GHz \rightarrow <1GHz

Remote dual etalon control, automatic optimization routine and feedback based frequency stabilization

Windmill for α - and γ - decay spectroscopy

Examples of Windmill spectra for At

The ISOLTRAP Multi Reflection Time Of Flight Separator MR-TOF

RILIS Spectroscopy DAQ, synchronization and remote control

Remote laser control

Send/receive ready signals for measurement SYNC

Live recording of laser scans Wavelength vs. Faraday cup Windmill MR-TOF

Astatine Isotopes

Gold Isotopes

Gold Isotopes – Examples of laser scans

Overview of results for charge radii measurements

Outlook, future developments

General RILIS

- Extension of RILIS cabin
- Dedicated, high beam quality laser for non resonant ionization
- Fully motorized TiSa automatic tuning/optimization
- Further optimization of LIST
- Other means of surface ion suppression

In-source spectroscopy

- Installation of a reference cell at RILIS
- Pulsed amplification of CW seeded Dye laser or TiSa

Acknowledgements

IS511

Shape coexistence in the lightest Tl isotopes studied by laser spectroscopy <u>http://greybook.cern.ch/programmes/</u> <u>experiments/IS511.html</u>

IS534

Beta-delayed fission, laser spectroscopy and shape-coexistence studies with radioactive At beams http://greybook.cern.ch/programmes/ experiments/IS534.html

IS456

Study of polonium isotopes ground state properties by simultaneous atomic- and nuclear-spectroscopy http://greybook.cern.ch/programmes /experiments/IS456.html

A. Andreyev^{1,16}, S. Antalic², A. Barzakh³, R. Chapman¹, T. E. Cocolios¹⁵, X. Derkx¹, H. De Witte⁵, J. Elseviers⁵, D. Fedorov³, K. Flanagan⁴, L. Ghys^{5,6}, M. Huyse⁵, N. Imai¹⁴, Z. Kalaninova², U. Köster⁷, J.Lane¹, V. Liberati¹, P. Molkanov³, K. Nishio⁸, D. Pauwels⁶, L. Popescu⁶, R.D. Page⁹, D. Radulov⁵, E. Rapisarda⁵, K. Sandhu¹, M. Seliverstov^{1,4}, J. F. Smith¹, K. Spohr¹, I. Tsekhanovich¹⁰, V. Truesdale¹, P. Van den Bergh⁵, C. Van Beveren⁵, P. Van Duppen⁵, M. Veselský¹¹, S. Fritzsche¹², K. Wendt¹³, S. Raeder¹³ ISOLTRAP: S. Kreim, V. Manea, F. Wionholtz, R. Wolf, M. Rosenbusch, C. Borgmann RILIS@CERN⁴: V. Fedosseev, D. Fink, N. Imai, B. Marsh, R. Rossel, S. Rothe, M. Sjodin

¹UWS, University of the West of Scotland, Paisley, UK ²Comenius University, Bratislava, Slovakia ³Petersburg Nuclear Physics Institute, Gatchina, Russia ⁴CERN, Geneva, Switzerland ⁵IKS, University of Leuven, Belgium ⁶SCK·CEN, Mol, Belgium ⁷ILL, Grenoble, France ⁸Advanced Science Research Center, JAERI, Tokai-mura, Ibaraki, Japan ⁹Oliver Lodge Laboratory, University of Liverpool, Liverpool, UK ¹⁰CENBG, Bordeaux, France ¹¹Slovak Academy of Science, Bratislava, Slovakia ¹²GSI, Darmstadt, Germany ¹³Mainz University, Germany ¹⁴ KEK, Japan ¹⁵ Manchester ¹⁶ York

1st Topical Workshop on Laser Based Particle Sources 20-22 February 2013 at CERN, Geneva, Switzerland <u>https://indico.cern.ch/conferenceDisplay.py?confId=212365</u>

Some Worldwide Laser Spectroscopy Options

In-source: RILIS, PNPI, TRILIS

- Sub 1 atom/s sensitivity
- Wide range of ionization schemes known
- Hot Cavity and associated Doppler broadening
- Target chemistry and release time dependence

In-gas cell laser spectroscopy: LISOL, IGISOL

- Relatively insensitive to chemistry
- Access to short half-lives
- Pressure broadening and shifts

Collinear: COLLAPS, IGISOL, CRIS, TRIUMF

- High resolution (typically limited by natural linewidth)
- Highly adaptable

Sensitivity / resolution trade off!

