Multinucleon transfer reactions : present status and perspectives

L.Corradi

Laboratori Nazionali di Legnaro – INFN, Italy

EMIS2012, Matsue (Japan) 3-7 December, 2012

Performance of the large solid angle spectrometers

Magnetic spectrometers for transfer reaction studies

THE PRISMA SPECTROMETER coupled to CLARA and AGATA DEMONSTRATOR GAMMA ARRAY

INFN exp. PRISMA (LNL,PD,TO,Na) INFN exp. GAMMA (LNL,PD,Fi,MI,Na,Pg) + broad Int. Collaboration (UK,F,D,PI,Sp,Ro,Hr)

PRISMA: a large acceptance magnetic spectrometer $\Omega \approx 80$ msr; $B\rho_{max} = 1.2$ Tm $\Delta A/A \sim 1/200$ Energy acceptance $\sim \pm 20\%$

$\Delta E - E$ matrix in ⁸²Se+²³⁸U at E_{lab}=505 MeV, $\theta_{lab} = 64^{\circ}$

beam current 2 pnA acquisition time 1 hour

Energy [arb. units]

Multineutron and multiproton transfer channels near closed-shell nuclei

S.Szilner et al, Phys.Rev.C76(2007)024604

Cross section measurements in ⁸²Se+²³⁸U at E_{lab}=505 MeV

Cross sections for exotic nuclei like the N=50 ⁸²Ge or ⁸⁰Zn could be mesaured down to few µb level

Fragmentation reactions of Xe isotopes at 1 A GeV on heavy targets

In fragmentation reactions on heavy targets one gets strongly decreasing yields of medium mass neutron rich isotopes, due to neutron evaporation and other complex secondary processes

D.Henzlova et al, Phys.Rev.C78(2008)044616

Studies of light partner reaction products

1 10^{-1}

10-2

35 40

G36(2009)113101 (Topical Review)

THE PRISMA + CLARA/AGATA CAMPAIGN

Lifetimes measurements in ⁴⁸Ca+²⁰⁸Pb at E_{lab}=310 MeV

J.J.Valiente-Dobon et al, PRL102(2009)242502

Spectroscopy on neutron rich nuclei produced in ⁴⁰Ar+²⁰⁸Pb and ⁷⁰Zn+²³⁸U multinucleon transfer reactions

with the good mass identification and high detection efficiency, spectroscopy could be performed in large isotopic chains

interplay between single-particle and collective excitations in Ar isotopes

S.Szilner et al, PRC84(2011)014325

toward the N=40 subshell closure, shell model description of spherical and deformed states

F.Recchia et al, PRC85(2012)064305

Spin alignment in ⁴⁸Ca+⁶⁴Ni and ⁴⁸Ca+²⁰⁸Pb mnt reactions

mnt reactions produce a large degree of spin alignment, which allows to study decay properties of populated states

D.Montanari et al, PLB697(2011)288 and PRC85(2012)044301

What about the heavy partner products ?

Exploring the north-east part of the nuclear chart via multinucleon transfer

ONGOING EXPERIMENTS

tagging of "light" partner with high resolution spectrometers and detection of coincident gamma rays of the heavy partner

high resolution kinematic coincidences between binary partners, and detection of secondary events (both mechanism and spectroscopy)

"off beam" measurements of integrated yields

Evaporation processes in multinucleon transfer reactions : an example of gamma-particle coincidences

Qval (MeV)

Direct identification with PRISMA+CLARA

S.Szilner et al, Phys.Rev.C76(2007)024604

Production of heavy neutron rich nuclei by multinucleon transfer reactions of ¹³⁶Xe+¹⁹⁸Pt at 7 MeV/A

GRAZING code calculations

PLF nuclei detected with VAMOS, coincident gamma-rays (both PLF and TLF) detected with EXOGAM

GANIL exp 2012

Y.Watanabe et al, contribution to this conference

Heavy neutron rich nuclei in the region of neutron closed shell N=126 populated via ¹³⁶Xe+²⁰⁸Pb multinucleon transfer reaction

Integral measurement to detect heavy transfer reaction products below the Pb region

Possibility to study betagamma decays properties

Jyväskylä exp 2012

E.Kozulin, V.Zagrebaev et al

Fragmentation reactions of ²³⁸U at 1 A GeV on Be targets

In fragmentation reactions on light targets one could produce very neutron rich nuclei in the "northeast" region, with cross sections down to 100 pb

H.Alvarez-Pol t al, Phys.Rev.C82(2010)041602R

Transfer induced fission : an interesting mechanism to study the population of very neutron rich heavy nuclei

When fission is wanted...

Neutron rich nuclei produced in the fission of ²³⁸U in ¹³⁶Xe+²³⁸U at E_{lab}=990 MeV

Part of the detected yield should correspond to transfer induced fission, a mechanism suitable to produce more neutron rich nuclei

PRISMA setted in order to detect (lighter) fission fragments

Extended the studies of the evolution of collectivity in n-rich Kr isotopes

N.Marginean et al., Phys. Rev. C80(2009)021301(R)

Neutron rich nuclei produced in the fission of ^{238}U in ^{238}U + ^{12}C at E = 6 MeV/A

2.9 2.95

3.05

з

3.1 3.15 3.2

Mass/Charge

Fission fragment identification with VAMOS+EXOGAM (GANIL)

A.Shrivastava et al, Phys.Rev.C80(2009)051305R

When fission is unwanted...

An example of simultaneous detection light and heavy transfer products for transfer induced fission studies

fission probability of associated heavy partners determined as function of Z,A (light partner) and Q-value of the reaction via a high resolution kinematic coincidence

L.Corradi et al, Phys.Rev.C66(2002)024606

-4

ΔZ

-2

0

0.6

0.4

-6

Transfer induced fission in inverse kinematics : ²³⁸U+¹²C at E = 6 MeV/A

Fission probability for ²⁴⁰Pu Discrepancies with data from neutron-induced fission

X.Derkx et al, Perspectives in nuclear fission Tokai 2012

Exploiting the multinucleon transfer mechanism to get acces to yet unknown transactinides

GRAZING code calculations

 ^{144}Xe $+^{\textbf{248}}\text{Cm}$ $\text{E}_{\text{LAB}}{=}800$ MeV

using very neutron rich projectiles, via proton pick-up and neutron stripping channels, one predicts very high primary cross sections for yet unknown transactinides. Therefore, it is important to study the fission probability of the heavy partner

Eurisol Project (key experiments) http://www.ganil.fr/eurisol/

More challenging experiments to be planned for RIB facilities

SPES ISOL facility at LNL : building design and beam transport to ALPI

G. Prete

SPES ISOL facility at LNL

Cyclotron 750 µA, 70 MeV (max) for protons in two exit ports:

RIB - up to 300 μA p on UCx
Application - up to 500 μA

Additional target station (special plants second priority) RIB or neutron production

SPES : beam energy

Representative expected beams at SPES

Accelerated RIB beams

Second generation ISOL facilities in Europe (Ucx target)

	Primary beam	Power on target	UCx target	Fission s-1	Reacceler ator	Nominal energy AMeV A=130
HIE ISOLDE upgrade	p 1-1.4 GeV - 2 μA	2 kW	Direct (150g)	4·10 ¹²	SC Linac	5-10
SPIRAL2	d 40 MeV 5mA	200 kW	Converter (4000g)	10 ¹³ 10 ¹⁴	CIME Cyclotron	5
SPES	p 40 MeV 200 μA	8 kW	Direct (30g)	10 ¹³	ALPI SC Linac	10

- mnt reactions have proven to be a suitable tool for the study of nuclear structure and reaction mechanisms of nuclei moderately far from stability

- the field benefited from exploiting the coupling of large solid angle spectrometers with large gamma-arrays

- so far, efforts concentrated mainly on the light reaction products. Ongoing experiments focus also on the heavy partner

 it is important to study secondary effects, like transfer induced fission, which will become more and more important using radioactive beams L.Corradi¹, S.Szilner³, G.Pollarolo⁴, E.Farnea², E.Fioretto¹, A.Gadea⁵, F.Haas⁷, D.Jelavec-Malenica³, N.M.Marginean⁶, C.Michelagnoli², T.Mijatovic³, G.Montagnoli², D.Montanarii², F.Scarlassara², N.Soic³, A.M.Stefanini¹, C.Ur², J.J.Valiente-Dobon¹

+ CLARA Collaboration

¹Laboratori Nazionali di Legnaro – INFN, Italy
 ²Universita' di Padova and INFN, Italy
 ³Ruđer Bošković Institute, Zagreb, Croatia
 ⁴Universita' di Torino and INFN, Italy
 ⁵Instituto de Fisica Corpuscolar, CSIC, Valencia, Spain
 ⁶IFIN-HH, Bucharest, Romania
 ⁷IReS, Strasbourg, France