16th International Conference on Electromagnetic Isotope Separators and Techniques Related to their Applications (EMIS2012)

from Sunday, 2 December 2012 at 13:00 to Friday, 7 December 2012 at 18:40 (Japan)

Concluding remarks

Interesting, well organized, and stimulating presentations

- Remarkable advances and challanges in instrumentation for RIB physics
- Technical progresses essential for the physics program at RIB facilities

Angela Bracco - University of Milano and INFN

TOPICS

- 1. On and off-line mass separation
- 2. Preparation of energetic radioactive beams
- 3. Target techniques and ion sources
- 4. Techniques related to high-power beams
- 5. Ion guides and gas jets
- 6. In-flight separators and storage rings
- 7. Ion optics and spectrometers
- 8. Mass spectrometry
- 9. Traps and laser techniques
- 10. Equipment for radioactive beam experiments
- **11.** Applications
- 12. Reactions for radioactive isotope productions
- 13. Facility initiatives

Topics well focussed on relevant items on instrumentation for RIB physics

Key Physics questions driving the technical developments

Properties of nuclei

- Develop a predictive model of nuclei and their interaction.
- Many-body quantum problem: intellectual overlap to mesoscopic science, quantum dots, atomic clusters, etc.
- The limits of elements and isotopes

Astrophysical processes

- Origin of the elements in the cosmos
- Explosive environments: novae, supernovae, X-ray bursts ...
- Properties of neutron stars

Tests of fundamental symmetries

 Effects of symmetry violations are amplified in certain nuclei

Societal applications and benefits

 Bio-medicine, energy, material sciences, national security

Rich scientific program for the next decade ! **Recoil separators :**

Low energyHigh energy

Recoil separators are devices which separate nuclear reaction products (recoils) leaving a target from the unreacted beam particles.

~25 years of separators dedicated for nuclear astrophysics Strong interaction between stable and RI Beam community

⁷Be(p, γ)⁸B

 $^{12}C(\alpha,\gamma)^{16}O$

ERNA separator in Napoli

Radiative capture and fusion reactions First step in chemical evolution of our universe

> New recoil separators are coming.... among them one in Korea

> > Manoel Kouder

Low energy reactions for nuclear astrophysics

Recoil separators at ANL (Darius Seweryniak)

- FMA is almost ready to accept high-intensity beams from ATLAS
- AGFA (Argonne Gas Filled Separator) will complement FMA for experiments with heavy nuclei

SUPERB (similar to S3) combines advantages of FMA and AGFA for experiments with reaccelerated radioactive beams

Super heavy elements

Separators for stable beams to measure small cross sections

RIKEN (gas filled recoil separatoror GARIS) - (Morita Kosuke)

Lanzhou (GAN Zaiguo and IMP SHN group)

ASCA (GSI)(A. Yakushev and Julia Even)

New Result in Production and Decay of an Isotope, of the 113th Element

Kosuke Morita

Superheavy Element Laboratory RIKEN Nishina Center for Accelerator-Based Science, RIKEN

Program of SHE search and spectroscopy at RIKEN

New isotope search of the heaviest nuclei and <u>detailed</u> spectroscopy with cold and hot fusion reactions.

Mass measurement of the heaviest nuclei with m-TOF system coupled to GARIS (Wada-san's group)

Study of heavy ion transfer reaction with GARIS for the study of neutron rich nuclei around N=126 region.

Try to measure X-ray from evaporation residues (in collaboration with W. Henning).

Developing FPD detector system for α - γ -e coincidence experiment

TASCA at GSI A. Yakushev

- Many improvements new target wheel new digital electronics stable and intense Ti-50 beam....
- First search for E119 and E120 with ⁵⁰Ti beam

2011: ⁵⁰Ti+²⁴⁹Cf; a cross section limit of 100 101 CR. 100 III JB 0013 2012: ⁵⁰Ti+^{249Bk}; a cross section limit of 55 fb reached in 4 monts

Confirmation experiments: synthesis of E117 and spectroscopy of E115

2 events of E117 in 4 weeks 25+ events of E115 in 3 weeks

Coupling of the gas-filled recoil separator TASCA to

chemistry and spectroscopy devices with a gas-jet

Julia Even Helmholtz-Institute Mainz

A. Yakushev; 16-th International Conference on Electromagnetic Separators, EMIS 2012, Matsue, 1-8.12.2012

Gas Filled Separator at Institute Modern Physics (GAN Zaiguo) First test experiment: ²⁰⁸Pb(⁶⁴Ni, n)²⁷¹Ds

One α -decay chain assigned to ²⁷¹Ds

- Study the chemical properties of SHE,
- the reaction mechanism to produce SHN
- the structure in heavy nuclei.

Secondary Beam preparation :

•Fragment separators:

FRIB Super-FRS Big-RIPS

FRIBS fragment separator design (M. Hausmann, MSU)

FRIB

A vertically bending preseparator (first stage) compresses the accepted momentum width of up to \pm 5% of the beam by a factor of three in the standard operational mode.

Production Target

Primary Bea

rom Accelerato

High resolution and high purity

A **three-stage** fragment separator for efficient collection and **purification** For ⁷⁸Ni from from 38/270000 to 33/590

high-resolution separator stage including momentum

tagging and the in-flight particle identification (**important for gamma decay in flight**!).

Comparison of FRS with Super-FRS

Hans Geisel

Higher acceptance and trasmission More than one order of magnitude !!

Separation with two degrader stages

Separator Experiments:

Search for New Isotopes, map the

Driplines

- Measure Production Cross Sections,
- Reaction Kinematics,
- Mass
- Rare Decay Modes (In-Flight Decay)
- Interaction, nucleon removal, charge-changing cross sections

PIONIC ATOMS (also at BigRIPS, Takahiro Nishi)

PID power for fission fragment

High enough to well identify charge states thanks to the track reconstruction!

Secondary Beam preparation :

•ISOL beams (GANIL, ISOLDE)

Gas catchers

Tierry Stora, Olivier BAJEAT + Daniel Flink

Towards Isobar Free Ion Beams ISOL(DE) targets and ion sources

Target materials (30):

- Refractory oxides carbides (Al₂O₃, SiC, UCx, nano Y2O3)
- Solid metals (Ta, Nb, Mo)
- Molten metals (Pb, La, Sn)
- Molten salt (NaF-LiF)

Ion sources (>5):

- Surface (W, Re, GdB6)
- FEBIAD, RF Plasma
- LIST (talk D. Fink)

IGISOL-4: Ian Moore. a new facility 2012

Stable beam testing to collinear line and to JYFLTRAP (not yet through) Beam from both cyclotrons to target chamber

- ⁵⁸Ni(p, n)⁵⁸Cu used to check IGISOL-4 yields
- First on-line implantation experiment last week (light-ion induced fusion-evaporation to ¹⁰⁰Pd)

(first) Cryogenic stopping cell at GSI/FAIR

Wolfang Plas

- Systematic study of the cryogenic stopping cell (e.g. intensity limitations, temperature effects)
- Increase stopping efficiency even further (higher densities)
 MR-TOF-MS
- Systematic study of mass measurement accuracy

Stefan Schwarz

The NSCL cyclotron gas stopper + traveling wave ion transport (Schawarz Stefan +Brodeure Maxime)

- Why gas stopping at NSCL
- Linear cells and their limitations
- Cyclotron stopper
 - Simulations
 - Design
 - Construction
- Status

Maxime Brodeure

- Novel approach (for RIB) [5]
- Transport using travelling wave
- Simpler circuitry and lower C
- Ion speed not discharge-limited

(can extract shorter-lived isotopes)

[5] G. Bollen, IJMS 299, 131 (2011)

Dealing with High power : targets Beam dumps magnets others...

High Power Target Technology

Federique Pellemoine Koichi Yoshida

Koichi Yoshida Beam Dump Temperature for ²³⁸U 345MeV/n 8.3pnA

Exit-Dump is operated with water of 13°C, 0.7MPa, and 2.6m/s. (Design: 1MPa, 10m/s)

Estimated beam spot at dump Heat load : 522W

ANSYS simulation: Temperature increase 15.0-13.0 = 2 °C (not bad, although large ambiguity)

Fragment Separator Magnets

Radiation tolerant magnets in frontend crucial for efficient operation

- High temperature superconductor (HTS) and low temperature superconductor (LTS) with radiation tolerant epoxy
 - HTS radiation hardness verified at Brookhaven National Laboratory.
 - Expected HTS magnets lifetime ~ facility lifetime
- Remote handling design in collaboration with ORNL

Primary Beam Dump Water-filled Rotating Drum for 400 kW operation

Also allows harvesting of rare isotopes from cooling water

LASER ionization techniques

TEXAS A&M

KISS RIKEN

LBL

LISOL

Leuven Isotope Separator On-Line

Bruce Marsh

Properties of Astatine isotopes

Charge radius (from isotope shifts)

Overview of results for charge radii measurements

Decay spectroscopy alpha and gamma decay

Klaus Wendt talk In-source Spectroscopy on Astatine

Thomas Cocolios

Collinear laser spectroscopy Probing the nucleus with atomic levels

 α tagging Charge radius Identifying hyperfine components with the DSS

"OROCHI" nuclear moment and spin for low

EMIS2012, 2012 12/2-7, T. Furukawa

(Traditional) laser spectroscopy of rare and exotic nuclei...

- Tiny fluorescent signal

Low yield & low trapping efficiency/interaction time

- Huge background photons

Mostly due to strong stray laser light

Our solution : "Laser spectroscopy in superfluid helium (He II)"

Laser Ion Sources Worldwide 2012 and beyond

Klaus Went

Slide: S. Rothe

TRAPS

Szilard Nagy, Susanne Kreim Daniel Rodriguez, Anna Kwiatkowsky Veli Kolhinen, Mathhew Redshow Peter Schury, Timo Dickel Jun Aoki

Challenges for Penning traps

- Low Production Rates
- Short Lifetimes
- Contamination

LEBIT(MSU)

Single ion penning trap project

Upgrade of JYFLTRAP for IGISOL4

Complementarity of traps at radioactive ion beam facilities

Production	ISOLTRAP CERN	TITAN TRIUMF	SHIPTRAP GSI	MLLTRAP LMU	JYFLTRAP	LEBIT NSCL	CPT ANL	TRIGA- TRAP
ISOL	Х	Х						
Fusion- evaporation			х	х				
IGISOL					Х			
Fragm.						Х		
Spontan. fission							х	
Neutron induced fission								x
НСІ		Х						

THeTRAP, FSU-TRAP, SMILETRAP II

HITRAP, PENTATRAP, TRAPSENSOR, MATS, Lanzhou-TRAP, RIKEN-TRAP

Penning trap and MR-TOF MS

Susanne Kreim + Anna Kwiatkwski

- Great advances in PTMS experiments
 - High-precision mass measurements
 - Techniques for fast measurement of "first masses"
- Multiple Reflection -TOF Mass Spectroscopy is a versatile tool which offers new possibilities
 - Support existing PTMS program
 - ⁸²Zn for astrophysics
 - ⁵⁴Ca for nuclear-structure studies
 - MR-TOF MS plus detector as stand-alone system
 - Decay spectroscopy setup behind MR-TOF MS

time of flight /ms

A. T. Gallant et al., Phys. Rev. Lett. 109; 032506 (2012)

3

MR-ToF mass meas.

20

10

Some high lights from Penning Trap Mass Spectroscopy

The Penning-trap industry" is booming!

- nuclear structure,
- halos,
- neutron stars,
- stability of

superheavy elements,

GARIS (RIKEN Gas-filled Recoil Ion Separator) + MR-TOF

Compact TRAP instruments for applications

Imaging mass Spectrometry Jun Aoki

New Applications of a Multiple-Reflection Time-of-Flight Mass Spectrometer in Environment Sciences and in Medicine

T. Dickel

1 Micron m resolution

- Various in-situ applications planned
 - Real-time tissue recognition
 - Waste water monitoring

Charge breeders and post accelerators

Charge breeders and post accelerators (P.Delahaye- Daniela Leitner- Tim Giles)

•Post acceleration (Cyclotron at GANIL and LINAC at ISOLDE and TRIUMF) ReAccelerating facility (ReA) at Michigan State used with the Coupled Cyclotron Facility at NSCL

 Automatic tuning of beam lines with many parameters to be adjusted including not conventional beam line elements

Storage rings

- GSI-FAIR
- HIRFL-CSR
- RARE-RI at RIKEN

STORAGE RINGS (Yuri Litvinov)

Single-particle sensitivity

Long storage times

SCRIPT at RIKEN Very short lifetimes

Direct mass measurements of exotic nuclei
Charge radii measurements [DR, scattering]
Experiments with polarized beams
Experiments with isomeric beams [DR, reactions]
Nuclear magnetic moments [DR]
Astrophysical reactions [(p,g), (a,g) ...]

High atomic charge states Broad-band measurements

High resolving power

Isochronous Mass Spectrometry in the Collector Ring

HIRFL-CSR Storage Ring Cluster internal target by Lu Rongshun (IMF)

Construction of Rare-RI Ring at RIKEN RI beam factory

Measure the mass for very neutron-rich nuclei !

very short life-time, very small production rate

2014	2015
Preparation /	Mass
Commissioning	measurements
Primary beam	⁷⁸ Ni
injection	&
Check of	nuclei near to
isochronism	A=80

Target	H ₂	N ₂	Ne	Ar	Kr
Thickness	06×10 ¹³	1.2×10 ¹³	2.0×10 ¹³	1.0×10 ¹³	1.0×10 ¹³

The SCRIT Electron Scattering Facility

CRYRING@ESR

Interest for use existing storage rings at

new facilities

And

90L92

From Sweden to FAIR

TSR @ ISOLDE

- Half-life measurements of ⁷Be in different atomic charge states
- Capture reactions for astrophysical p-process
- Nuclear structure through transfer reactions
- Long-lived isomeric states
- Atomic effects on nuclear half-lives
- Nuclear effects on atomic decay rates
- Di-electronic recombination on exotic nuclei
- Neutrino physics; Tests for the neutrino beam project
- Purification of secondary beams from contaminants

CRYRING@ESR: A study group report

From Heidelberg to CERN

TDR positively evaluated by

High resolution spectrometers

SAMURAI at RIKEN

for kinematically complete measurements in RI-beam induced reactions. heavy ion detectors and neutron/proton detectors commissioned in March 2012. First 3 physics experiments Knock out GDR

MNT and other reactions

+ applications

Reactions for radioactive beam production : mnt

- Evolution of shell structures
- Lifetime measurements
- Strength function
- Polarization effects in MNT

Future plan : measurements with SPES

SPES facility at LNL

136Xe+198Pt reaction at 8 MeV/u

Reaching the N=126 for the peak formation around mass number of 195 on the solar r-abundance

Reactions	s for radioactive beam production				
Fragmentation Hiroshi Suzuki	Projectile fragmentation of as ⁴⁸ Ca and ¹²⁴ Xe at 345 MeV/u and in-flight fission of a ²³⁸ U				
Juzuki	Compared with the EPAX2 for fragmentation and LISE+ for the in-flight fission.				
Charge changing Cross sections	RI produced from ⁵⁶ Fe and ⁷⁰ Ge at 500 MeV/nucleon.				
Takayuki Yamaguci	The cross sections showed a dramatic change of the even-odd staggering effect as a function of Z/N ratio.				
Proton polarization Satoshi Sakaguchi	A proton polarization in photo excited aromatic molecule at room temperature of several percent (14%) has been achieved				
	(five orders of magnitude higher than the thermal polarization).				
	8(1)-% spin-aligned ³² Al beam was produced through the				
Spin aligned RI Hidechi Ueno	two-step fragmentation of ⁴⁸ Ca \rightarrow ³³ Al \rightarrow ³² Al.				
	reduction in the production yield was minimized to				
	~1/50 compared with single-step scheme				

	Applications
	mutation induction using heavy-ion beams. Fast heavy ions cause dense, localized ionization to break the DNA double strand
Tomoko ABE	(more effective at inducing mutations thansingle-strand DNA breaks)
Nuclear Radioactive Methods in materials and Biophysics Martins Correira	Many examples 61Cu/61Ni (3.3h) probe at ISOLDE . β-NMR used to study the hyperfine structure in liquid samples opening new possibilities for investigating metal-protein interactions of ions
Wear dignostic of Industrial material with RI ⁷ Be and ²² Na	The near surface of the parts within $10 - 100 \mu m$ is activated wear-loss evaluated by the change of the γ -ray intensity. dose rate of 5 kBq/h. implantation depth controlled by using a rotating energy
Atsushi Yoshida	degrader

A comment from Wolfy Mittag :

Find a balance between high resolution and high performances of detectors and performances of accelerators and separators

GAMMA-RAYS and electromagnetic separators

Fission products (short lived)at ILL with a gas filled magnetic Spectrometer and prompt gamma-ray spectroscopy

Gamma-ray detector arrays

Detector	efficiency	Peak/total	Resolution	Resolution	
			Slow beams	fast beams	
Compton shielded Ge	5 – 10%	0.50	2.5-5.0 keV	10%	
Segmented Ge	3- 5%	0.20	2.5 keV	1-2%	
Scintillation(Nal, Csl)	50%	0.50	100 keV	Greting-	RET
(LaBr₃)					
Tracking Ge (now)	5 –7%	0.50	1		
(4π)	50%				

Gammasphere

GRAPE

DALI

AGATA Demonstrator

EMIS2012

RIB Facilities in the world

Overview : Roadmap

Thomas Nilsson Europe

Yanlin Ye Asia

Georg Bollen USA

New and common developments

are needed (to help keeping schedules)!!

Progress report for : ANURIB project at VEEC (Nabhiraj Yalagoud) HIE-ISOLDE (Richard Catherall) ATLAS (R.C. Pardo) RISPS(Corea) (Yong-Kyun Kim)

Thanks to :

the speakers , poster presentations the session chairs, the participants !

Thanks to the organizers !

EMIS2012 LOCAL ORGANIZING COMITTEE

RIKEN

KEK

- T. Uesaka (Chair)
- T. Ichihara
- T. Isobe
- K. Morimoto
- T. Ohnishi (Scientific secretary)
- T. Sonoda
- K. Yoneda (Scientific secretary)
- K. Yoshida

- Y. Hirayama
- H. Ishiyama (Scientific secretary)
- Y. Watanabe

EMIS2012 PROGRAMME COMITTEE

EMIS2012 INTERNATIONAL ADVISORY COMITTEE

