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lon guiding for the cyclotron gas stopper

Cyclotron gas stopper (cycstopper): reversed operation mode cyclotron (S. Schwarz talk)

* Provide thermal RIB to precision experiments (M. Redshaw talk) and for re-

acceleration (D. Leitner talk).
* Some ions of interest will have T+12 < 50 ms and/or produced at low yields.

h The efficient and quick transport of the stopped ions is critical.
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lon guiding for the cyclotron gas stopper

Cyclotron gas stopper (cycstopper): reversed operation mode cyclotron (S. Schwarz talk)

* Provide thermal RIB to precision experiments (M. Redshaw talk) and for re-

acceleration (D. Leitner talk).
* Some ions of interest will have T+12 < 50 ms and/or produced at low yields.

h The efficient and quick transport of the stopped ions is critical.
Performed detailed R&D of transport methods for the cycstopper.

Qutline
1) Transport in stopping region

* lon surfing method experimental results

2) Transport in extraction region

* The ion conveyer experimental results
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lon guiding in the stopping region

lon transport choice guided by: ~10 cm
«—>
e Space constrain: set by pole piece separation /\

* Clearance along the path of energetic ions
 Geometry: cylindrical symmetry
* Required axial extraction of the ions

lon extraction
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lon guiding in the stopping region

lon transport choice guided by:

e Space constrain: set by pole piece separation
* Clearance along the path of energetic ions

e Geometry: cylindrical symmetry

* Required axial extraction of the ions

< >

Easiest choice:

1) Push ions axially (with AV)
2) Transport along repelling surface towards orifice
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lon guiding in the stopping region

lon transport choice guided by:

e Space constrain: set by pole piece separation
* Clearance along the path of energetic ions

e Geometry: cylindrical symmetry

* Required axial extraction of the ions

< >

Easiest choice:

1) Push ions axially (with AV)
2) Transport along repelling surface towards orifice

lon extraction
-3

RF carpets creates such repelling (Wada-san talk)

/ trajectory
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Transport methods using RF carpets

Potential gradient

VoMM MOM- VM- © Traditional approach [1-4]

* Transport using potential gradient

Fo * Complicated circuitry with large C
y * Drag field discharge-limited
.'0” (limit on T4,2 that can be extracted)
Frr

G. Savard et al., NIM B 204, 583 (2003).

0°RE+DC ¢ 1 ATM | -l- | -|- | -|- M. Wada et al., NIM A 204, 570 (2003).

[1]
[2]
3]'S. Eliscev et al., NIM B 266, 4475 (2008).
(o] [ .
180°RF+DC o—— MM MMAEMMNAEM R o ol EPL 96, 52001 (2011)
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Transport methods using RF carpets

Potential gradient
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* Transport using potential gradient

Fo * Complicated circuitry with large C
y * Drag field discharge-limited
.‘0” (limit on T1,2 that can be extracted)
Frr

G. Savard et al., NIM B 204, 583 (2003).

0°RE+DC ¢ 1 ATM | -l- | -|- | -|- M. Wada et al., NIM A 204, 570 (2003).
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[2]
3]'S. Eliscev et al., NIM B 266, 4475 (2008).
(o] [ .
180°RF+DC o—— MM MMAEMMNAEM R o ol EPL 96, 52001 (2011)

I (i
on Su 'an nve "« Novel approach (for RIB) [5]
P * Transport using travelling wave
Vi, e Simpler circuitry and lower C

W\/ e lon speed not discharge-limited
Fre (can extract shorter-lived isotopes)
0°RF+0°wave o T T T T

180°RF+270°wave o
0°RF+180°wave o o o
180°RF+90°wave o o o

[5] G. Bollen, IIMS 299, 131 (2011)
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lon surfing R&D goals

g%URFIN USA

A )

Require efficient transport of light (A ~ 20) short-lived nuclei (< 50ms) for the cycstopper.

-» [est experimentally the limitations of the ion surfing method.

(should ultimately achieve faster transport than conventional method)

=» (Gauge used: the maximum transport speed for efficient transport vs.:

* Pressure (increased pressure gives higher stopping efficiency)
e Push field (larger beam rates, more ionization results larger push towards carpet)
* lon mass (aim at A ~ 20 and possibly lower)
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lon surfing carpet design

Designed carpet with maximized repelling Frr.
=» Minimize pitch, while maximizing frr.

100

FRF(max) (2111)05

1) Maximize resonant frr Also added C in series with carpet

. . . to reduce overall C.
e Minimize carpet C by using thin substrate

2) Minimize carpet pitch a Result: frr = 6.8 MHz for a = 375um
* Min. manufacturing gap & electrode width
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Test setup for RF carpet R&D

+V/ plate for |
push field

I _al |
RF carpet

Test setup includes: ™ Push plate

* Movable surface ion source

* Push field plate & RF carpet

 RF & traveling wave circuitry

* pA-meters to read transported ion current

_PB_ ! <— lon source

5cm tRW Collection p/ad

carpet

D ———
_>|
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Experimental results vs.

N Parameters used:
{| —=—22.5 m/s, exp. - .
604 =0 -225m/s, sim. m RF amplitude 75,51V
—e— 60 m/s, exp. = R
@ g | =0 =60 ms,sim ’ 1 |RF frequency 6.6, 6.8 MHz
] Push field 45, 30 V/cm
‘S 40 i
s ] Beam current 1 nA
>
3 30 - 1 |Pressure 120, 80 mbar
5 20- N 1 |Travel distance 30 cm
[ 4
2 10- 1 |Wave speed 60, 22.5 m/s
0- N Good agreement between experimental
1.0 15 20 25 30 35 40 45  results and simulations including hard sphere
Wave amplitude (V) collisions (lonCool code).
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Experimental results vs.

simulations
e Parameters used:
o] o e = . | |RFamplitude 75,51V
~ ] e 2?2 . a 1 |RF frequency 6.6, 6.8 MHz
\\E; 50__ | |Push field 45, 30 V/cm
E s 1 |Beam current 1 nA
% 304 1 |Pressure 120, 80 mbar
2 20- N | |Travel distance 30 cm
S 10_- Wave speed 60, 22.5 m/s
0- _ Good agreement between experimental
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NSCL

Locked mode
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35 40 45 \ results and simulations including hard sphere
collisions (lonCool code).

Vion = Vwave
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Maximum transport speed

Maximum speed vionma fOr efficient ion transport (90% over 10cm).
-» Varied Vrr, wave amplitude and speed for different P, push field & A

80 — T T T T T T T T T ' T " T T T T T 80 — T T 1 T T ' T T T ' T T T T T T
70 K - 70 - .
® [ gw -
E E
> 50- i/i/./‘\-\ - > 50- -
o | O J
S o
2 40 - S 40- §
c ] c ]
o ie)
c 304 - e 304 -
-} >
S ] ] S ]
(§>é 7 @ ] g 207 —=— P =80 mbar | |
] ] l a—%— 4, 4 —e— P =120 mbar| |
10 A o—9 —=—P=80mbar |] 10+ —aA— P =160 mbar | |
' —e— P =120 mbar| | R a— —v— P =200 mbar |
0 — T T T T T "~ T T T T " T T 0 — T T T T T T 1 T T " T T 1
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50

Push field (V/cm) Push field (V/cm)
1) K: peak speed of ~50 m/s
2) Increased P: tolerate lower push and wave amplitude =» lower speeds
3) Rb at P = 80, 120 mbar: could go faster, limited by circuitry used

Frr(max) @47raf <1—1.09\/ a2f@ﬁ. ! >

2V Ko T /Ty sinc(7y/2)
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lon transport in extraction region

After leaving stopping region, need quick & efficient transport through magnet yoke.

“Traditional” transport methods: Issues for the cycstopper:
 RFQ ion guide » ¢ Magnetic field gradient requires high RF frequencies
 RF funnel » ¢ Pressure in region: 2 to 30 mbar limits DC gradient,

resulting in slow extraction.

B (T)
Carpetw O o
=S| 150
wuwE=H e
n ==
Q=% 30.0 94.8
— Q22 |+
S== 65.0
o=z
CE=
Iron yoke / = &2
v RFQ
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lon transport in extraction region

After leaving stopping region, need quick & efficient transport through magnet yoke.

“Traditional” transport methods: Issues for the cycstopper:
 RFQ ion guide » ¢ Magnetic field gradient requires high RF frequencies
 RF funnel » ¢ Pressure in region: 2 to 30 mbar limits DC gradient,

resulting in slow extraction.

Proposed solution: ion conveyer

Stacked rings

e Stacked rings
* Traveling wave pushed ions axially
* \Weak radial focusing
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lon conveyer first prototype

* 4 phases traveling wave, 19V max, up to 500 kHz

* Ring structure made on the fly from stockroom material
(that’'s why it looks crooked)

* Rb*ions from surface source

100 - —s=— simulation
—e— measurement

(e}
o
!

Efficiency (%)
N

N
o

Found good agreement between measured
efficiency measurements and simulations

o
1 .

0.0 1.0 2.0 3.0 4.0 5.0

P (mbar) including hard sphere collisions (lonCool code)
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Current & future testings

* RF carpet with circular stripes

e Improve the RF circuit, frr = 8.4 MHz
* Reached 75 m/s for K at 80 mbar

* Next: transport of Na

e Cycstopper RF carpet will be formed
of 6 pie-shaped circular segments

* Designed ion conveyer

* 8 phases traveling wave

* Prototype have been assembled
and ready to test.
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lon transport summary

lon specie 39K 858'Rb  |240 (t12 =65ms)

Max. ion velocity (80 mbar) [(~50m/s |>75m/s |[~10m/s*

Transport time on carpet * 5 ms <4 ms 28 ms
Transport time on conveyer * (4 ms 3 ms 1 ms
Total transport time 9 ms <7ms 29 ms

* Based from simulation results
** Used stopping distribution centroid: 0.27(12) m

e Extraction time lower then 30 ms down to A = 24.

* The transport methods using traveling wave studied will
allow both a quick and efficient extraction of radioactive ions.

Special thanks to:
A.E. Gehring, G. Bollen, N. Joshi, S. Schwarz and D.J. Morrissey.
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lon surfing transport regimes

The travelling wave carries the ions along the carpet in two possible regimes:
e Slipping (if Vion < Vwave)
e Locked (if Vion = Vwave)

80mbar, 85V & 2.16MHz RF, 3V/cm, 85 amu

Locked: 4V wave

15[ 5 5 5 5 I
. Slipping: 1V wave
15[ 5 5 I 5 I

* With increased wave amp., the ions gets deeper in the trough
* When locked-mode is reached, Vion = Vwave remains constant
e Until amplitudes gets too large resulting in ion losses

H

wave amplitude (V)

N

10 20 30 40 50
wave velocity (m/s)

NSCL

National Science Foundation Maxime Brodeur
Michigan State University EMIS 2012 conference
December 4th, 2012



RF carpet design optimization

For the cycstopper, want efficient transport of light (A ~ 20) short-lived nuclei (< 50ms).

-» Need a carpet with maximized repelling force (since Frr « A)

Frr(max) =m - 4Wd@<1 - 0 577?% sinc(i@2)>

Possible actions: e Increase RF amplitude V (discharge-limited to ~ 75V at 100 mbar)
* Reduce gap/pitch ratio (Frr changes weakly with gap/pitch)

* Reduce pitch a if
* Increase RF frequency f

Need to reduce carpet capacitance

100

Frr(max) (a.u. .
re(Max) ( )0.5
0.0
05 Y
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lon transport using RF & DC gradient

One common transport method makes use of RF carpets *. ;54

1. Made of electrode stripes on which an alternating
RF voltage with reversed polarity on adjacent electrode
1s applied. Results in repealing pseudo-potential.

transport

—

2. Couples a constant voltage gradient to guide the 1ons
to the extraction orifice.

V.

I
ion

IF o RF pseudo-
RF

potential

e TTTTTTT.T ™

180°RF +DC 00— AMAS- AN AN~

N

potential from
push field

3. The force from the RF 1s used to balance a pushing field
that drives the 1ons towards the carpet.

e
* M. Wada et al., NIM A 204, 570 (2003) f“’"%-y
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Transport efficiency measurement

Transport efficiency measurement procedure:

1) CO||eCti0n eﬁ:iCiency: €coll. — [coll./Icarpet
where: ]carpet — Ifilam. — Ilens
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Transport efficiency measurement

Transport efficiency measurement procedure:

1) CO||eCti0n eﬁ:iCiency: €coll. — ]coll./Ica'rpet
where: ]carpet — [fz'lam. — Ilens

100 —— T T T T T T T T T T T T
80 A -
9
S 60 .
Q0
O
© v
S 40 - -
"§ = 1.5V wave: x =722(58) cm
<=<3 20 ® 25V wave: x, = 358(14) cm 1
4 3.5Vwave: x,=114(2) cm
v 4.5V wave: x =21.21(8) cm
O | ! | ! | ! | ! | ! | ! |

0 5 10 15 20 25 30 35

travelled distance (cm)

2) Fit decay of efficiency: ecoy. (z) = 27%/*

to obtain half-distance xo
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Transport velocity measurement

Transport velocity measurement procedure: 134V

1) Switch down ion source bias (block ions). . =
2) Results in a drop of lpads @

3) Travel time: moment drop occurs

(obtained using a Boltzmann+sine fit function) = blﬁ or K+ =

— ; e @ D
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Transport velocity measurement

Transport velocity measurement procedure: 134V

1) Switch down ion source bias (block ions). . =
2) Results in a drop of Ipads @
3) Travel time: moment drop occurs —a— o—
(obtained using a Boltzmann+sine fit function) = b}y or K+ =
0.00 - DR . ‘

4) Repeat for different distances d

S . : _
o 5) Average ion velocity: d = 0 - (t — tgr0p)
© -0.02 1 T T T T T T T T T T T T T
§ 351 slope: 26.3(6) m/s 7
Z ]
Q 30 .
= -0.04 - s
o S 254 i
9 0
(] 8 i
£ -0.06 3 20 -
o c |
= S
S g '
o -0.08 - 8 104 ]
k2
T T T T T T T © 1
-0.05 0.00 0.05 0.10 0.15 5'_ ]
Time after switching (s) 0 ————t1
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average total travel time (ms)
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