

Recoil Separators for Nuclear Astrophysics studies

Manoel Couder Institute for Structure and Nuclear Astrophysics University of Notre Dame Joint Institute for Nuclear Astrophysics

10 years ago ... in Canada

Α

N

s

Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms

Volume 204, May 2003, Pages 124-128

14th International Conference on Electromagnetic Isotope Separators and

Techniques Related to their Applications

Recoil separators

Cary N. Davids 📥 🖾

Recoil separators are devices which separate nuclear reaction products (recoils) leaving a target from the unreacted beam particles.

Recoil separators operating in the vacuum mode play a key role in a number of current research areas, including searches for superheavy elements, the study of nuclei far from stability and nuclear astrophysics. I will review some of these facilities, and will discuss ideas for improving the selectivity and efficiency of these devices.

Outline

- Nuclear astrophysics
- Radiative capture kinematics
- Past, present and future of recoil separator dedicated to radiative capture
- Conclusions

- First step in chemical evolution of our universe
 - Big Bang nucleosynthesis

s

ı.

N

Α

Р

- 500 million years later first generation of stars
- Present star generation
- Charged particle reactions generate the seed and the fuel for nucleosynthesis processes building the elemental and isotopic abundance distribution as observed
 Gap 10⁰ 10¹ 10² 10³ 10⁴ 10⁵ 10⁶ 10⁶ 10⁶ 10⁶

Stellar processes

N

s

L

Α

Р

explosive nucleosynthesis - novae & X-ray bursts

Some interesting reactions

N

s

Α

¹²C(α,γ)¹⁶O Holly grail of Nuclear Astrophysics, determine the ratio of ¹²C/¹⁶O after Helium burning as well as abundance of elements after subsequent evolution $\Delta\theta$ =±31mrad mrad Δ E=6.5% (~100pµA)

¹⁵O(α ,γ)¹⁹Ne triggers X-ray burst and contribute to determine their light curve $\Delta \theta$ =±17 mrad ΔE =3% (~10¹¹ part/s)

¹³N(p,γ)¹⁴O first reaction involving radioactive beam, triggered the development of recoil separators to study radiative capture

¹⁸O(α , γ)²²Ne populate one of the two main ingredient for production of neutron in the s-process $\Delta \theta$ =±40 mrad ΔE =7.4%

Radiatiative capture reaction studies

- Center of mass energies
 - (α,γ): ~0.01 MeV to ~15 MeV
 - (experimentally ~0.3 MeV to ...)
 - (p,γ): ~0.01 MeV to ~4 MeV
 - (experimentally ~0.2 MeV to ...)
- Direct kinematics

Α

Р

N

s

- With stable ions (¹H and ⁴He beams)
 - Exclusively detection of the gamma's
- Inverse kinematics
 - Coincidence between gamma's and recoil
 - Stable (to improve efficiency and signal to background ratio)
 - Radioactive beams
 - Recoil separator

- Beam and recoil charge state distribution after target
 - ~30-50% maximum total efficiency
 - Other charge state can be source of background
 - See Dave Hutcheon talk at 15th EMIS
- $\overrightarrow{p_b} = \overrightarrow{p_R} + \Sigma \overrightarrow{p_{\gamma_i}}$

in first approximation recoil momentum = beam momentum

- Critical quantities:
 - $-\Delta M/M$
 - Angular and energy acceptance
 - Rejection (~at least 10⁻³ * reaction rate)

s

€, (mrad)

Figure 1 Distribution of recoils in the θ_x , θ_y space for ${}^{12}C(\alpha,\gamma){}^{16}O$ ground state transition at E = 1.0 MeV. For different γ -ray angular distributions. Left: isotropic. Center: $\sin^2 \theta$. Right: $\sin^2 \theta \cos^2 \theta$. For reference, a circle shows an angular acceptance of 24 mrad. See text for details.

For absolute cross section, full transmission of the selected charge state is needed

Attempt at FMA to study ${}^{13}C(p,\gamma){}^{14}N$ and ${}^{18}O(p,\gamma){}^{19}F$ and ${}^{18}F(p,\gamma){}^{19}Ne$ but limited in transmission

From: PoS(ENAS 6)058

Dipole magnet cancels either E/Q or velocity dispersion to achieve M/Q dispersion

Spot size is due to magnification

DEDICATED DEVICES

CTAG Caltech

The availability of post accelerated radioactive beams opened the door to direct cross section measurements

For example the ¹³N beam of Louvain-la-Neuve allowed the study of ¹³N(p,γ) in inverse kinematics

At Caltech, a recoil separator was constructed out of existing elements of the accelerator lab to demonstrate the feasibility of a recoil separator

 13 C(p,γ)¹⁴N 16 O(α,γ)²⁰Ne 12 C(α,γ)¹⁶O

s

Т

N

Α

Р

European Recoil separator for Nuclear Astrophysics

NABONA in Naples study ${}^{7}Be(p,\gamma){}^{8}B$ Parts moved to Bochum (Germany) Addition of Caltech Wien filter-> ERNA **Dedicated to the study of {}^{12}C(\alpha,\gamma){}^{16}O**

ERNA at the DTL, Bochum,

Adapted from a slide of L. Gialanella

angular acceptance ± 32 mrad
 energy acceptance ± 10%
 For ¹⁶O at E_{lab}=3.0 – 15.0 MeV

ien filter

- 65 kV

Background and leaky beams

3MV Pelletron High intensity stable and radioactive (^{7,10}Be) ion beams (possible ²⁶Al) \bigtriangledown

Plans: ⁷Be(p, γ)⁸B ¹²C(α , γ)¹⁶O ¹⁶O(α , γ)²⁰Ne ³³S(p, γ)³⁴Cl ^{14,15}N(α , γ)^{18,19}F SHE in nature

Slide of L. Gialanella

Recoil separator in Kyushu

s

L

Recoil separator in Kyushu

s

Е

Ν

FIGURE 2. Energy – TOF spectra with (a) and without (b) the LTC. LTC = Long Time Chopper

AIP Conf. Proc. 1238, 208 (2010)

Daresbury Recoil Separator DRS ORNL - HRIBF

Angular Acceptance: 6.5 msr (+/- 45 mrad horizontal and vertical)A/Q Acceptance: +/- 1.2 %Velocity Acceptance: +/- 2.5 %Energy Acceptance: +/- 5 %A/Q resolution: 1/300A/Q dispersion: 0.1 %/mmOverall Length: 13 m

s

L

N

Radioactive beam !

Rejection ~10⁸-10¹²

MON1

Fig. 2. Beam suppression by the DRAGON mass separator as a function of beam energy per unit mass. The separator was tuned for recoils from proton capture reactions. NIMB 266 (2008) 4171

Electric Dipole

DETECTORS

Radioactive beam !

Two stages

Electrostatic dipoles Rejection ~10¹⁰-10¹³

Last news:

- 4 He(3 He, γ) 7 Be With rejection >10 14
- Conditioning ED up to +/-230kV

Some specs (for a ¹⁵O(a,g)¹⁹Ne tune):

Optical path length 20.4 m

Acceptance

- ang.: (+/-20 horiz. & +/- 25 vert.)
- velocity +/- 2 %

Resolving power: 200 at first stage 600 for second stage

Effective mass resolution: ~ 90 after 1st stage, ~ 200 after 2nd stage

FIG. 7. Local time-of-flight vs. total detected energy for singles recoil events at $E_{\text{beam,lab}} = 502A$ keV and $P_{\text{targ}} = 3.55$ mbar, with the gray density plot indicating all particles detected and the empty squares showing A = 24 recoils.

Fig. 3. Energy spectrum of recoil product and "leaky" beam for a proton capture experiment. The hatched areas indicate recoils detected in hardware coincidence with gamma rays.

SEparator for Capture Reaction

EDO

Features:

Two steps charge state selection Attention to Wien filter design:

- E and B field homogeneity
- E/B ratio kept constant with magnetic field clamps and electrode design.

"Clean-up" section – additional momentum analysis

SECAR to be installed at ReA3

Radiative capture induced by radioactive beam

Based on design of St. George

JENSA Gas Jet target: up to 10¹⁹at/cm²

Acceptance:	First stage:
θ = ±25mrad	Resolving power: 750
∆E= ±3.1%	Mass resolution: 520
15 <a<65< td=""><td></td></a<65<>	
Bρ<=0.8 Tm	Second stage:
	Resolving power: 1330
	Mass resolution: 775

Design: G.P.A. Berg, M. Couder

Rare Isotopes Science Project Korea

- Recoil separation with p-rich RI beams from ISOL system
 - radiative capture reactions : (p, γ), (α , γ) reactions
 - background reduction ~ 10⁻¹⁵

N

s

L

- gamma-array @ F0, recoil detection @ F6

Summary

- Dedicated separator for radiative capture
 - Important tools for direct measurements of astrophysical interests
- Need stable beams to commission and tune
 - Can be used during fast beam operation
- Preliminary identification of resonance energy
- Did not mention target, detection system, diagnostics
 - They are critical
- ~25 years of separators dedicated for nuclear-astrophysics
 - Strong interaction between stable and RI Beam community
- New recoil separators are coming

Thanks !

- ERNA
 - Lucio Gialanella
 - Daniel Schürmann
- KUTL separator
 Kenshi Sagara
- DRS
 - Daniel Bardayan
- DRAGON
 - Dave Hutcheon
- SECAR
 - Georg Berg