December 6, 2012 EMIS2012, Kunibiki-Messe

High Intensity Beam Handling for Nuclear and Particle Physics at J-PARC

Kazuhiro TANAKA Particle and Nuclear Physics Division, J-PARC Center,

Institute of Particle and Nuclear Studies, **KEK:** High Energy Accelerator Research Organization,

E-mail: kazuhiro.tanaka@kek.jp

J-PARC

Japan Proton Accelerator Research Complex

J-PARC at Tokai-mura, Ibaraki-ken

J-PARC

111

Japan Proton Accelerator Research Complex

Bird's eye photo in July 2009

J-PARC

CRCS

GeV333µA

Japan Proton Accelerator Research Complex

~500m

mi

400Me

Bird's eye photo in July 2009

/ to

.....

MLSF

Hadron ounter experiments

Goals at J-PARC

Power Capability of J-PARC

JFY2008 JFY2009 JFY2010 JFY2011 JFY2012 JFY2013 JFY2014

Nuclear & Hadron Physics at J-PARC

High Intensity Beam Handling

- Beam Transport Devices (Magnets etc.) should be radiation/heat resistant.
- Beam Transport Devices should be replaced easily and quickly in the case of trouble.
- High Intensity Handling should be designed as a system.
 - Power/water/Vacuum lines,
 - Daily operation/maintenance,
 - Radiation shields,

Radiation Resistant Chimney Magnet

Water Manifold & Electric Connection at Service Space Level

Completely Inorganic

Chimney -

MIC Magnet-

Chimney magnet Lift up test

Chimney magnets aligned on line at Hadron Hall

Chimney magnets aligned on line at Hadron Hall with radiation shields

Service Space; Water/Electric circuits

Water Piping Inorganic; using steam piping technology

Electric Circuits Inorganic; using Cu B.B.

Bridges for Water & Electric Power; Quick Disconnect System

Water Connector Metal sealed lever coupler

- Normal operation with 2MPa
- Normal operation temperature : 15∼80°C
- Two inch. Diameter
- Cu-ring annealing @750°C
- Deficit depth > 0.2mm

Q.D. Electric Power Connector

Quick Disconnect device

Shield Penetrating Bus Duct;

Constructed as a part of Radiation Shield No Labyrinth Structure was necessary

Shield Penetrating Bus Duct (Outside)

Shield Penetrating Bus Duct (Inside)

Service Space near T1 Target

Pillow Seal for Vacuum Connection

Our first one (1989) for KEK-PS Effective Dia. = 30cm, Leak rate $\sim 10^{-8}$ Pa·m³/s

On non-flat...

On dust....

- Now, Leak rate is ~4x10⁻¹²Pa•m³/s
- Effective Dia. >50cm

•

Pillow Seal for Vacuum Connection

Mineral Insulation Cable (MIC)

MgO

ATATA S

+ 12 1 1 1 t

日立 無機絶縁導体 HITACHI Mineral Insulation Cable (MIC)

仕様 中実タイプ 中空タイプ MIHC-MIHC-MIHC-MIHC-MIHC-寸法(mm) 1000A-S 2000A-S 2000A-H 2500A-H 3000A-H 1 外径 A 14.0 18.0 19.8 23.8 28.0 肉厚 シース T1 0.7 0.7 1.0 1.1 1.5 外R R1 1.2 1.2 2.0 3.0 4.0 内R **R**2 0.8 0.8 1.0 1.9 2.5 2 外径 12.6 16.6 17.8 21.6 в 25.0 インシュレータ Τ2 肉厚 1.7 1.7 1.7 1.8 2.5 3 外径 С 9.2 13.2 14.4 18 20.0 導体 内径 D 10.0 10 --10.0 肉厚 Т3 _ _ 2.2 4.0 5.0 外R **R**3 2.6 2.6 2.5 4.0 3.0 内R R4 -_ 0.8 1.3 1.0 1 >-X 36.6 47.8 断面積 72.6 95.3 150.6 (mm^2) 2 インシュレータ 79.4 106.6 114.0 153.2 227.4 ③ 導体 78.8 168.4 101.4 208.8 293.1 合 計 194.8 322.8 288.1 457.3 671.1 中空穴断面積 (mm²) 99.5 98.5 _ 99.1 _ 単重 ① シース 0.327 0.427 0.649 0.852 1.347 (kg/m) 2 インシュレータ 0.187 0.250 0.268 0.360 0.534 ③ 導体 0.705 1.506 0.907 1.867 2.621 合 計 1.218 2.183 1.824 3.078 4.502 製造可能長さ(m) 60 30 60 60 60

MIC

2. 仕様

仕 様 品番·名称	材質	化学成分	硬度 (Hv1kg)	導電率 (%,20°C)
① シース	C1220-0	Cu 99.90%以上	40~50	-
② インシュレータ	MgO	MgO 98.0%以上	-	-
③ 導体	C1020-0	Cu 99.96%以上	40~50	100以上

3. 納入形態 外径 φ 1800程度のゼンマイ巻き

※「MIC」は、文部科学省高エネルギー加速器研究機構殿・株式会社トーキン殿との共同開発品です

日立電線株式会社					
土浦工場	技術部	TEL:0298-26-7426	FAX:0298-23-2442		
茨城支店	伸銅営業課	TEL:0294-24-4821	FAX:0294-22-3049		

Radiation resistant magnet for J-PARC (Q440MIC) 2500A-200V、~30t

and the lot

NEC TOKIT

000

-

000

Radiation resistant magnet for J-PARC (Q440MIC)

Special Chimney Magnets near T1

TTTTT I III III TTTTTTT

Modules

Solid MIC with Indirect Water Cooling

- SC-MIC is sandwiched by cooling tubes.
- Whole coil is impregnated by tin.

Super Radiation Hard Magnet: K1.8Q1

Central Vacuum Chamber

T1 Target Area

i.

Beam Dump

Beam Dump - Heat analysis by MARS & ANSYS K. Agari (calculated by A. TOYODA & M. MINAKAWA)

We have to reduce the volume of Cu...

750kW Full Beam Dump

- Manufacture of Copper core (2m x 2m x 5m)
- 250 mm thick Copper plates
- 1/3 in FY 2006, 2/3 in FY 2007, set in FY2008
- 100% of Iron Blocks were purchased in 2006
- •Concrete blocks will be transferred from Tsukuba in 2008.

Conical hole and Temp. analysis with ¹/₄ model

ビームダンプ設置工事

Structure of traveling devices

An "Inchworm" Method.

Complete remote operation with just LAN Cable!

201X -

Extension of the Hadron Hall

Extend the small Phase-1 Hadron Hall to fulfill the demand from the users.

Contents are being discussed based on the voice from the community. A working group has been formed under an endorsement by the HUA. The Nuclear Physics Committee of Japan defined the extension as the highest priority large-scale project after the new primary beam line.

KL: From the discovery of K⁰ rare decay to a search for physics beyond the Standard Model

Conclusions 1

- Primary proton beam line of J-PARC Hadron Experimental Hall was constructed as Radiation Resistant Magnet System.
- R.-R. Magnet with Chimney was a key technology of the R.-R. Magnet System.
 (This is important, however, insufficient!)
- All the peripherals were re-designed and constructed as a part of true R.-R. Magnet System.
- For this purpose, Service Space was prepared within the radiation shield.

Conclusions 2

- Electric Power Distribution Circuits in S.S. were assembled by Copper Bus Bars. No cables were inside.
- Water Distribution Circuits in S.S. were constructed as inorganic piping system by using steam piping technology.
- Shield Penetrating Water Cooled Bus Duct was initially installed as a part of radiation Shield. No labyrinth Structure was necessary.
- Bridges between Chimney and S. S. circuits were made with quick disconnect devices.

- Target Area and Beam Dump
 - Special care should be necessary.
 - However there are several solutions!
 Depending on the accelerator energy.
 - Our solution is Pentagon vacuum chamber and BEAMDUMP with Conical hole.