

FRIB Fragment Separator Design

M. Hausmann, A. M. Amthor, L. Bandura, R. Bennett, G. Bollen, W. Mittig, D. J. Morrissey, F. Pellemoine, M. Portillo, R. M. Ronningen, M. Schein, B. M. Sherrill, A. Zeller

Facility for Rare Isotope Beams

Michigan State University

This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661. Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.

Outline

- Production of rare isotope beams for science at FRIB
- Fragment separator design
 - Design goals
 - Beam physics design
 - Production target
 - Fragment separator magnets
 - Beam dump
 - Mechanical design
 - Remote handling

FRIB – a DOE-SC National User Facility for Science with Rare Isotope Beams

Properties of nuclei

- Develop a predictive model of nuclei and their interactions
- Many-body quantum problem: intellectual overlap to mesoscopic science, quantum dots, atomic clusters, etc.

Nuclear Structure

• The limits of elements and isotopes

Astrophysical processes

- Origin of the elements in the cosmos
- Explosive environments: novae, supernovae, X-ray bursts ...
- Properties of neutron stars

Tests of fundamental symmetries

• Effects of symmetry violations are amplified in certain nuclei

Societal applications and benefits

• Bio-medicine, energy, material sciences, national security

Tests of Fundamental

Symmetries

Isotopes for

Society

FRIB Rare Isotope Beam Reach

- FRIB is estimated to produce more than 1000 NEW isotopes at useful rates (4500 available for study; compared to 1900 now)
- Enabling studies of nuclei along the driplines
- Production of the most key nuclei for astrophysical modeling

Rate estimates are available at https://groups.nscl.msu.edu/frib/rates/fribrates.html

Rare Isotope Production at FRIB

- In-flight production is fast and chemistry-independent
- Projectile fragmentation of all primary beams

Projectile fission of heavy primary beams, specifically ²³⁸U

FRIB Facility Overview Rare Isotope Beams for Science

- Driver LINAC: accelerates all ion species to ≥ 200 MeV/u at power up to 400 kW
 - Upgradable to 400 MeV/u
- Fragment separator: in-flight production and separation of rare isotopes
- Science with fast, stopped, and reaccelerated rare isotope beams

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Fragment Separator Design Goals Utilize 400 kW Primary Beam to Maximize Science Results

- Efficient collection of rare isotopes to leverage production at 400 kW
 - Angular acceptance of ± 40 mrad and momentum acceptance of ± 5 %
 - Projectile fragments and fission fragments to maximize FRIB facility reach
- Clean rare isotope beams to enable world-class experiments
 - Three stage separation overcomes contamination from secondary reactions
- Tunable to any rare isotope for maximum science reach
 - Design rigidity of 8 Tm covers essentially all possible nuclides
- Meeting challenges of operation at 400 kW
 - Advanced concepts for production target and beam dump to mitigate high-power density, radiation damage
 - Sufficient shielding to deal with high radiation fields
 - Use of radiation resistant components (magnets)
 - Remote handling of activated components
- Compatible with FRIB upgrade option of beam energies ≥ 400 MeV/u
 - Magnetic rigidity range up to 8 Tm covers > 2/3 of isotopes at upgrade energies

Fragment Separator Acceptance Goal

- Parametric study of particle rate at experiment as function of acceptance parameters
 - Studied ⁴²Si, ¹⁰⁰Sn, ¹³²Sn
 - At 200 MeV/u primary beam energy
- Acceptance of ±40 mrad in angles and ± 5 % in momentum
 - Effective collection of fragmentation product
 - Acceptable for fission fragments

Rare Isotope Beam Purity

- Three stage separator for optimum beam purity
 - Example: ⁷⁸Ni from 253 MeV/u ⁸⁶Kr (calculated w/ LISE++ version 8)

F165r1

- Second stage overcomes most of secondary reaction induced contamination
- Third stage in case of thick 2nd wedge or for momentum tagging

Magnetic Rigidity Requirement

- Design rigidity Bp_{max} = 8 Tm covers basically all beams at optimum conditions
 - Assuming typical target thickness: 30% of range of primary beam (d/R = 0.3)
 - Compatible with energy upgrade to 400 MeV/u
 - » 8 Tm covers around 80% for high-Z beams and more than 2/3 of isotopes overall

FRIB Fragment Separator Design Overview

Vertical preseparator followed by two horizontal separator stages

Michigan State University

FRIB Preseparator

- Provides first separation of rare isotopes and stops primary beam
 - Intercepts the primary beam
 - Momentum cut and first mass separation of rare isotopes
- Houses production target and beam dump
 - Major radiation sources located 30 ft. (10 m) below grade
 - Component maintenance/replacement via vertical lift with
 remote controlled overhead crane and windows work stations
- Connects to separator stages 2 and 3 and existing grade level beam distribution system
- Is momentum compressing achromat
 - Matches 10% momentum acceptance to following separator stages and NSCL beam lines
 - Momentum compression in vertical plane preserves horizontal emittance for efficient gas stopping

Preseparator Beam Physics Design Versatile allows optimization for different rare isotopes

- Image and beam dump after 1^{st} dipole \rightarrow large acceptance for isotopes far from stability
- Image and beam dump after 2nd dipole → upgrade option for heavy rare isotopes near stability
- Aberration correction for entire fragment separator (typically 76 parameters)
 - Optimization using particle swarm optimizer

Versatile Operation of Separator Stages 2 and 3 Multiple operational modes allow optimization for different types of experiments

- Two-stage separation: beam purity for very exotic nuclei
 - Cleanup of contamination from secondary reactions in upstream wedges
- Momentum/phase space tagging in 3rd stage: improved gamma ray Doppler correction and in-flight particle – ID for experiments on multiple isotopes in cocktail beams
- Single stage separation: in-flight identification of atomic charge state for rare isotopes with Z > 50.

Constructed from existing A1900 magnets with sextupole and octupole correction coils
 Improved field description based on mapping of spare A1900 triplet → poster by M. Portillo

Preseparator Mechanical Design Side View of Front End

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

FRIB Production Target Rotating Multi-slice Graphite Target for 400 kW Operation

- 400 kW beam focused to 1 mm diameter spot size
 - Deposited power ~ 100 kW, power density 20 60 MW/cm³
 - Power density and multi-slice operation demonstrated through electron beam tests at SARAF, SANDIA, and BINP
- Annealing of radiation damage at operating temperature (1200 1900 °C) verified with heavy ion irradiation at GSI
 - See talk by F. Pellemoine (Thursday, session VI, 9:00 am)

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Fragment Separator Magnets Radiation tolerant magnets in frontend crucial for efficient operation

- High temperature superconductor (HTS) and low temperature superconductor (LTS) with radiation tolerant epoxy
 - HTS radiation hardness verified at Brookhaven National Laboratory.
 - Expected HTS magnets lifetime ~ facility lifetime

Primary Beam Dump Water-filled Rotating Drum for 400 kW operation

- Stop all primary beams with up to 325 kW absorbed beam power
 - Major challenges: high power density and radiation damage » Efficient replacement/maintenance required,1 year lifetime desirable
- Water-filled rotating drum beam dump is concept chosen
 - Thin wall limits shell heat load
 » 0.5 mm Titanium
 - Rotation spreads heat and radiation damage
 » 400 rpm, 70 cm diameter
 - Water absorbs bulk of power and cools the shell
 - » Flow ~60 gpm
 - » Also allows harvesting of rare isotopes from cooling water
- Slit function provided by downstream fragment catchers

Primary Beam Dump Prototype

- Design verification program: flow mockup tests with prototype beam dump
 - Rotation speed, flow rates, pressure, bubble formation, cavitation, prototypic operation
- Prototype beam dump currently being assembled
 - Titanium shell drum for flow mockup tests
 - See-through acrylic drum for visual study of bubble formation, etc.

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

Summary

- Fragment separator design for FRIB leverages rare isotope production with 400 kW primary beam
 - Efficient collection and separation of rare isotopes with large acceptance, three stage fragment separator
 - Versatile layout allows tailoring of separator settings to specific experiments
 - Isotope harvesting provisions included in fragment separator design
- Radiation transport and remote handling aspects are integrated parts of the fragment separator design
- Risks from beam power and radiation mitigated by successful R&D programs
 - Power density and radiation damage in production target
 - Power density and radiation damage in beam dump
 - Radiation tolerance of high temperature superconductor demonstrated
- FRIB fragment separator advanced design will maximize science

