

Ion beam mutagenesis and

Mutagenomics Tomoko Abe

RIKEN Nishina Center Radiation Biology Team

New flower color

Surfinia Rose Veined

Temari Sakura Pink

Sterile :

Temari momo

Temari Bright Pink

Overview of the RI-Beam Factory (RIBF)

Plant breeding with heavy-ion beams is a technology unique to Japan.

It is achieved through an efficient synergistic link between agricultural science and accelerator physics

Advantages of ion-beam breeding

- Low dose, high mutation rates, and wide variation.
- A mutant lacking just a single gene to the target characteristic.
- The time span for breeding can be shortened to 2 years.
- 22 plant cultivars and 2 microbes on sale since 2001 (ca 2 billion Yen /year).

Ion-beam Mutagenesis

the same principle as naturally.

Olivia Purele White (Hokko Chemical Industry Co.LTD.)

北國化学工業株式会社

E5B Line for Biological Experiments

The original model (12 samples/h)

Ver.2 model of Apr. 2003 (12 samples/h) with the range shifter (LET adjuster)

Ver. 3 model of Apr. 2004 (40 samples/h)

Ryuto H. et.al., J. Biomed. Nanotech. 2, 88-93 (2006)

Various Plant Targets Are Available for Irradiation

Dry seeds Wet seeds Branchs

Tissue culture materials Callus, Stem, shoot, leaf

Ryuto H. et.al., Plant Biothec. 25, 119-122 (2008)

Plant organs to be irradiated

Ryuto H. et.al., J. Biomed. Nanotech. 2, 88-93 (2006)

Mutants Developed from the RIKEN Beams

Mutant phenotype	Plant material	Mutatio	Mutation rate (%)		
Sterile					
Verbena	Stem		09-2.8		
Cyclamen	Tuber		6.7		
Eucalyptus	Shoot primordia		9.3		
Color and shape					
Petunia	Ovary		1.0		
Dahlia ^a	shoot		20.3-50.1		
Rose ^b	Dormant scion		43.1-51.7		
Chrysanthemum	Stem		4.5-14		
Torenia	Leaf and stem		1.6-18.8		
Orchid ^c	shoot		5.0-6.3		
Variegation					
Petunia Hybrida	Stem		1.8		
Dwarf					
Tricyrtis hirta ^d	Embryogenic callus		2.4		
Millet	Dry seed		0.1		
Buckwheat ^e	Dry seed		0.6		
Pepper ^f	Dry seed		1.3		
Salt tolerance					
Rice	Wet seed		1.2		

 ■ 重イオンビームによる品種改良法の開発から 遺伝子機能解明へ
 ■ 代議員立候補のお願い **BUTSURI** 第67巻第10号(通巻753号) ISSN 0029-0181 昭和30年6月13日第34種種便物誌可 平成24年10月5日発行 毎月5日発行 2012 VOL. 67 NO.

Heavy-ion beam Mutagenesis : From plant breeding to gene function analysis

A Photo of Mutant flowers made the cover of BUTSURI Vol 67, Oct. 2012, Membership Journal of the Physical Society of Japan.

http://www.jps.or.jp/

Ion Beams for Biological Experiments at RIBF

Arabidopsis: Model plant used for genetics

LET of

22.5 keV/µm is not enough to induce mutation,
30 keV/µm is the best for mutation,
61.5 keV/µm is not enough particle no. for induce mutation, because those dose reduces survival rate.

Kazama Y. et.al., Plant Biothec. 25, 113-118 (2008)

WT	Ion species	LET (keV/µm)	No. of M ₁ plant	No. of M ₂ plant	No. of mutants (‰) <i>hy + gl</i> mutants
	С	22.5	3,734	27,765	11 (0.40)
gl		30.0	3,056	29,595	23 (0.78) 🖕 LET _{max}
		290	5,863	57,771	23 (0.40)
hy	Ar	290	5,726	51,686	27 (0.52)
	Mutation frequency (‰) was calculated by dividing the number of mutants by the total number of M_2 plants.			EMS \Rightarrow 0.87 ethyl methanesulfonate X-ray \Rightarrow 0.32 Koornneef et al. (1982)	

C-ions at LET_{max} (30keV/µm) has same mutation rate as chemical mutagens.

Mutagenomics

Mutants have become more and more useful and important in modern genetic studies. The discovery of genes using mutants may lead to the new field in biology, "Mutagenomics".

Consortia on ion beam breeding

(156 Japanese groups, 15 oversea groups)

Two semi-dwarf mutants were isolated from 324 M₃ lines.

Nagano Chushin Agric. Ext. st.

After typhoon No.14 in 2005

Saline paddy field is maintained at ¹/₄ of sea water concentration.

We isolated 4 salt resistant lines in saline paddy field from 325 M_2 progeny lines. Compared to the yields of the control plants, 6-99L and 14-45 plants were 1.16- and 1.21-fold higher, respectively.

Line	Mutation rate(%)	Plant height (cm)		Grain yield in saline	
	-	Normal	Saline	paddy field(g/m²)	
Nipponbare		114.9	85.0	402.9	
6-99L (40Gy,23keV/μm	i) 1/91 (1.0)	124.4	102.5	466.5	
19-74 (20Gy, 23keV/μr	n) 1/82 (1.2)	124.2	97.6	454.2	
18-36 (15Gy, 60keV/μr	n) 1/75 (1.3)	124.0	95.1	451.2	
14-45 (20Gy, 40keV/µr	n) 1/77 (1.3)	130.3	102.2	487.8	

C ion beam irradiation at April 2011.

The seedlings were grown in a paddy field at the Miyagi Pregectural Furukawa Agricultural Experiment Station. We obtained 368 M_2 lines for Hitomebore and 351 for the Manamusume.

368 lines X16=5888 plants 351 linesX16=5616 plants

We isolated 73 salt-resistant candidate lines from 719 lines. We will select again salt-resistant plants from 73 lines in 2013.

Newspaper

International Herald Tribune April, 2012

"Even with <u>decalination</u>, the yield has dropped," Mr. Ota, 56, a sun-tanned, fifth generation farmer with graying hair, said during a recent interview. Boasting About Bin Laden Log in to discover more articles based on what you've read.

The Economist May, 2012

Beam Time in 2011 (conclusions)

Number of Samples

lon LET(keV/µm) Energy (keV/u)	¹² C 22.5 135	²⁰ Ne 61.5 135	⁴⁰ Ar 290 95	⁵⁶ Fe 640 90	Total
April	357	171			528
June	356				356
Sep	582			70	70
Feb	382		84	24	490
Total	1677	171	84	94	2026

New TechnologyPlant breedingLETmax=30-70 keV/μmMicrob

Microbial breeding

Surfinia White

Saitama Yesat G strain

Total Beam time is about 48 hrs

"Nishina Homare" (in honor of Nishina), named after Yoshio Nishina, the father of nuclear physics in Japan and one of RIKEN's most eminent scientists.

Growing A Peaceful World through Breeding

Thanks for your attention!

