EMIS2012, MATSUE, JAPAN

#### BigRIPS as a high resolution spectrometer for pionic atoms

Takahiro Nishi Department of Physics, University of Tokyo for Pionic Atom Factory Project

G.P.A. Berg<sup>A</sup>, M. Dozono<sup>B</sup>, N. Fukuda<sup>B</sup>, T. Furuno<sup>C</sup>, H. Fujioka<sup>C</sup>, H. Geissel<sup>D</sup>, R.S. Hayano, N. Inabe<sup>B</sup>, K. Itahashi<sup>B</sup>, S. Itoh, D. Kameda<sup>B</sup>, K. Okochi,
T. Kubo<sup>B</sup>, H. Matsubara<sup>B</sup>, S. Michimasa<sup>B</sup>, K. Miki<sup>E</sup>, H. Miya, M. Nakamura<sup>B</sup>,
Y. Murakami, N. Nakatsuka<sup>C</sup>, S. Noji<sup>F</sup>, S. Ota, H. Suzuki<sup>B</sup>, K. Suzuki<sup>G</sup>, M. Takagi, H. Takeda<sup>B</sup>, Y. K. Tanaka, K. Todoroki, K. Tsukada<sup>H</sup>, T. Uesaka<sup>B</sup>, Y. Watanabe, H. Weick<sup>D</sup>, H. Yamada, and K. Yoshida<sup>B</sup>

Univ. of Tokyo, Univ. of Notre Dame<sup>A</sup>, RIKEN<sup>B</sup>, Kyoto Univ.<sup>c</sup>, GSI<sup>D</sup>,Osaka Univ.<sup>E</sup>, Michigan State Univ.<sup>F</sup>, SMI<sup>G</sup>, Tohoku Univ.<sup>H</sup>

# deeply-bound Pionic Atom



Large overlap between pion and nucleus → probe for QCD in finite density





Missing mass spectroscopy



Missing mass spectroscopy

2 body kinematics
 →mass of the pionic atom can be calculated from Q-value

Calculated from  $E_d$ ,  $E_{3He}$ 



Phys. Rev. C44 (1991) 2472



Phys. Rev. C62 (2000) 025202

(d,<sup>3</sup>He) reaction



K. Itahashi, et al., Phys. Rev. C62 (2000) 025202



S. Hirenzaki, H. Toki, T. Yamazaki, Phys. Rev. C44 (1991) 2472

# The experiment at GSI



### **Spectroscopy of Pionic Atom at RIBF**



NNDC, BNL

|                                         | GSI                      | RIBF                  |      |
|-----------------------------------------|--------------------------|-----------------------|------|
| intensity                               | ~10 <sup>11</sup> /spill | ~10 <sup>12</sup> /s  | ×50  |
| Target                                  | 20 mg/cm <sup>2</sup>    | 10 mg/cm <sup>2</sup> | ×0.5 |
| angular acceptance                      | ~10 mrad                 | 40 / 60 mrad          | ×20  |
| Δp <sub>d</sub> / p <sub>d</sub> (FWHM) | 0.03%                    | 0.1%                  | ×3   |
| resolution (FWHM)                       | 400 keV                  | ~ 850 keV             |      |

|                                         | GSI                      | RIBF                  |      |
|-----------------------------------------|--------------------------|-----------------------|------|
| intensity                               | ~10 <sup>11</sup> /spill | ~10 <sup>12</sup> /s  | ×50  |
| Target                                  | 20 mg/cm <sup>2</sup>    | 10 mg/cm <sup>2</sup> | ×0.5 |
| angular acceptance                      | ~10 mrad                 | 40 / 60 mrad          | ×20  |
| Δp <sub>d</sub> / p <sub>d</sub> (FWHM) | 0.03%                    | 0.1%                  | ×3   |
| resolution (FWHM)                       | 400 keV                  | ~ 850 keV             |      |

|                                         | GSI                      | RIBF                  |      |
|-----------------------------------------|--------------------------|-----------------------|------|
| intensity                               | ~10 <sup>11</sup> /spill | ~10 <sup>12</sup> /s  | ×50  |
| Target                                  | 20 mg/cm <sup>2</sup>    | 10 mg/cm <sup>2</sup> | ×0.5 |
| angular acceptance                      | ~10 mrad                 | 40 / 60 mrad          | ×20  |
| Δp <sub>d</sub> / p <sub>d</sub> (FWHM) | 0.03%                    | 0.1%                  | ×3   |
| resolution (FWHM)                       | 400 keV                  | ~ 850 keV             |      |

|                                         | GSI                      | RIBF                  |      |
|-----------------------------------------|--------------------------|-----------------------|------|
| intensity                               | ~10 <sup>11</sup> /spill | ~10 <sup>12</sup> /s  | ×50  |
| Target                                  | 20 mg/cm <sup>2</sup>    | 10 mg/cm <sup>2</sup> | ×0.5 |
| angular acceptance                      | ~10 mrad                 | 40 / 60 mrad          | ×20  |
| Δp <sub>d</sub> / p <sub>d</sub> (FWHM) | 0.03%                    | 0.1%                  | ×3   |
| resolution (FWHM)                       | 400 keV                  | ~ 850 keV             |      |

|                                         | GSI                      | RIBF                  |           |
|-----------------------------------------|--------------------------|-----------------------|-----------|
| intensity                               | ~10 <sup>11</sup> /spill | ~10 <sup>12</sup> /s  | ×50       |
| Target                                  | 20 mg/cm <sup>2</sup>    | 10 mg/cm <sup>2</sup> | ×0.5      |
| angular acceptance                      | ~10 mrad                 | 40 / 60 mrad          | ×20       |
| Δp <sub>d</sub> / p <sub>d</sub> (FWHM) | 0.03%                    | 0.1%                  | <b>×3</b> |
| resolution (FWHM)                       | 400 keV                  | ~ 850 keV             |           |

|                                         |           | GSI                               | RIBF                  |                |  |
|-----------------------------------------|-----------|-----------------------------------|-----------------------|----------------|--|
| intensity                               |           | ~10 <sup>11</sup> /spill          | ×50                   |                |  |
| Target                                  |           | 20 mg/cm <sup>2</sup>             | 10 mg/cm <sup>2</sup> | ×0.5           |  |
| angular acceptar                        | nce       | ~10 mrad                          | 40 / 60 mrad          | ×20            |  |
| Δp <sub>d</sub> / p <sub>d</sub> (FWHM) |           | 0.03%                             | 0.1%                  | ×3             |  |
| resolution (FWH                         | M)        | 400 keV                           | 200~300 keV           | factor 1.3 ~ 2 |  |
|                                         | elir<br>u | ninate the effe<br>sing dispersio |                       |                |  |

### **Experimental Setup**



# **Experimental Setup**



# **Dispersion Matching**

# Eliminate contribution of beam momentum spread to the resolution



# **Dispersion Matching**

# Eliminate contribution of beam momentum spread to the resolution



# **Dispersion Matching**

# Eliminate contribution of beam momentum spread to the resolution



$$A_{16} = -CS_{16}/S_{11}$$

matching condition realized by adjusting  $A_{16}$  = dispersion of Analyzer

#### Dispersion matching using primary beam











### The pilot experiment

| 1  | 1121  | 1131  | 1141     | 1151  | 1161  | 1171  | 1181  | 1101  | 1201  | 1211  | 1221  | 1895  | 1241   | 1251         | 1261  | 1271  | -1281 |
|----|-------|-------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------------|-------|-------|-------|
| Z  | 1121  | 1101  | T T - 11 | 1101  | 1101  | 11/1  | 1101  | 11.51 | 1201  | 1211  | 126.1 | Ν     | uC     | ear          |       | nar   |       |
|    | 111Te | 112Te | 113Te    | 114Te | 115Te | 116Te | 117Te | 118Te | 119Te | 120Te | 121Te | 122Te | 123Te  | 124Te        | 125Te | 126Te | 127Te |
| 51 | 110Sb | 111Sb | 112Sb    | 113Sb | 114Sb | 115Sb | 116Sb | 117Sb | 118Sb | 119Sb | 120Sb | 121Sb | 122Sb  | 123Sb        | 124Sb | 125Sb | 126Sb |
|    | 109Sn | 110Sn | 111Sn    | 112Sn | 113Sn | 114Sn | 115Sn | 116Sn | 117Sn | 118Sn | 119Sn | 120Sn | 121Sn  | 122Sn        | 1238n | 124Sn | 125Sn |
| 49 | 108In | 109In | 110In    | 111In | 112In | 113In | 114In | 115In | 116In | 117In | 118In | 119In | 120In  | 121In        | 122In | 123In | 124In |
|    | 107Cd | 108Cd | 109Cđ    | 110Cd | 111Cd | 112Cd | 113Cd | 114Cd | 115Cd | 116Cd | 117Cd | 118Cd | 119Cd  | 120Cd        | 121Cd | 122Cd | 123Cd |
| 47 | 106Ag | 107Ag | 108Ag    | 109Ag | 110Ag | 111Ag | 112Ag | 113Ag | 114Ag | 115Ag | 116Ag | 117Ag | 118#g  | 119Ag        | 120Ag | 121Ag | 122Ag |
|    | 105Pd | 106Pd | 107Pd    | 108Pd | 109Pd | 110Pd | 111Pd | 112Pd | 113Pd | 114Pd | 115Pd | 116Pd | 117.Pd | 118Pd        | 119Pd | 120Pd | 121Pd |
| 45 | 104Rh | 105Rh | 106Rh    | 107Rh | 108Rh | 109Rh | 110Rh | 111Rh | 112Rh | 113Rł |       | irst  | EX     | <b>(pe</b> ) | rim   | ent   | 120Rh |
|    |       |       | 61       |       | 63    |       | 65    |       | 67    |       | 69    |       | 71     |              | 73    |       | N     |

NNDC, BNL

# The result of pilot experiment



# The result of pilot experiment



# The result of pilot experiment





# **Theoretical calculated spectrum**



resolution ~ 300 keV

\*N. Ikeno et al., Eur. Phys. J. A 47, 161 (2011)









# Summary and future works

- We constructed new optics using dispersion matching with primary beam at RIBF, RIKEN for deeply-bound pionic atom experiment.
- We performed the pilot experiment with the target of <sup>122</sup>Sn.
- The deeply bound pionic states in <sup>121</sup>Sn was observed successfully.
- Thanks for large angular acceptance of BigRIPS, angular dependence of the (*d*, <sup>3</sup>He) reaction cross section was also observed.
- Now we are finalizing the result of the pilot experiment to extract binding energy and width of deeply bound pionic states.
- In the main experiment, we will optimize the dispersion matching condition and improve the resolution.

# Summary and future works

- We constructed new optics using dispersion matching with primary beam at RIBF, RIKEN for deeply-bound pionic atom experiment.
- We performed the pilot experiment with the target of <sup>122</sup>Sn.
- The deeply bound pionic states in <sup>121</sup>Sn was observed successfully.
- Thanks for large angular acceptance of BigRIPS, angular dependence of the (*d*, <sup>3</sup>He) reaction cross section was also observed.

the first observation in the world

- Now we are finalizing the result of the pilot experiment to extract binding energy and width of deeply bound pionic states.
- In the main experiment, we will optimize the dispersion matching condition and improve the resolution.

### Ongoing other projects in our group

# Feasibility study of inverse kinematics for pionic atom $\rightarrow$ pionic unstable nuclei

#### η' mesic nuclei by using C(p,d) reaction @GSI

(2.5 GeV proton / high resolution spectrometer)