EMIS2012, Matsue, Japan

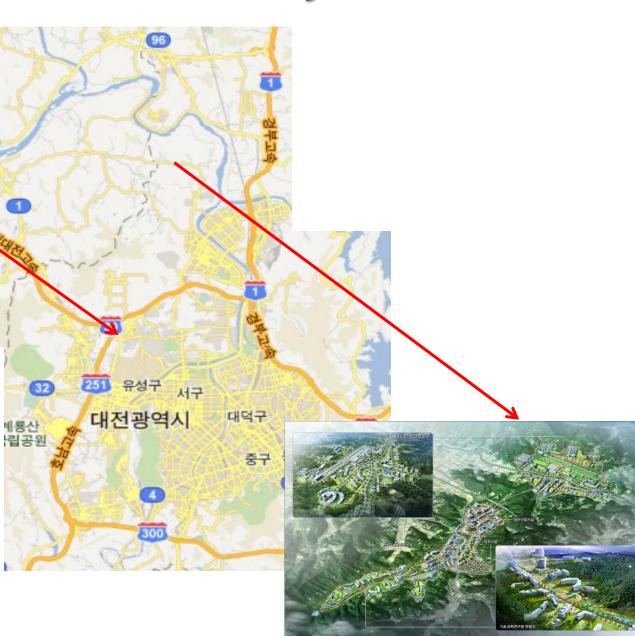
Current Status of RISP (Rare Isotope Science Project)

7th December 2012

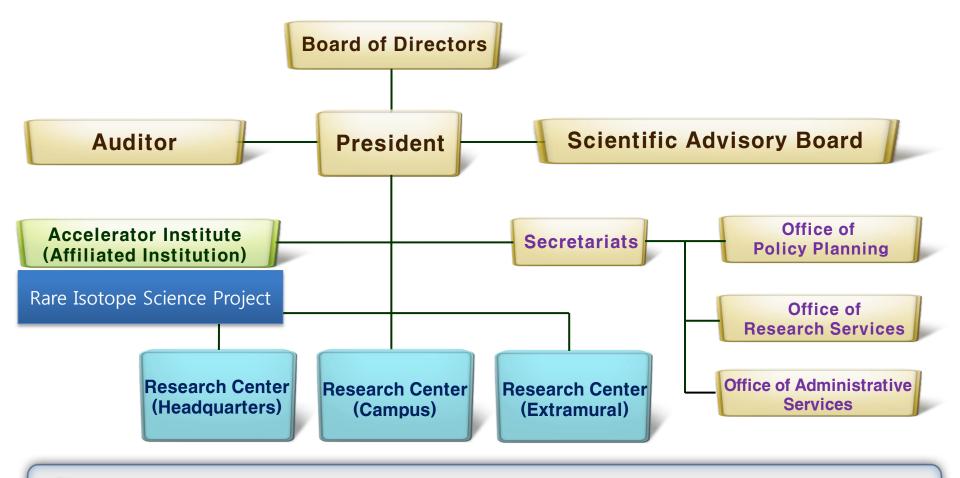
Yong-Kyun KIM

on behalf of RISP

Institute for Basic Science, Daejeon, Korea

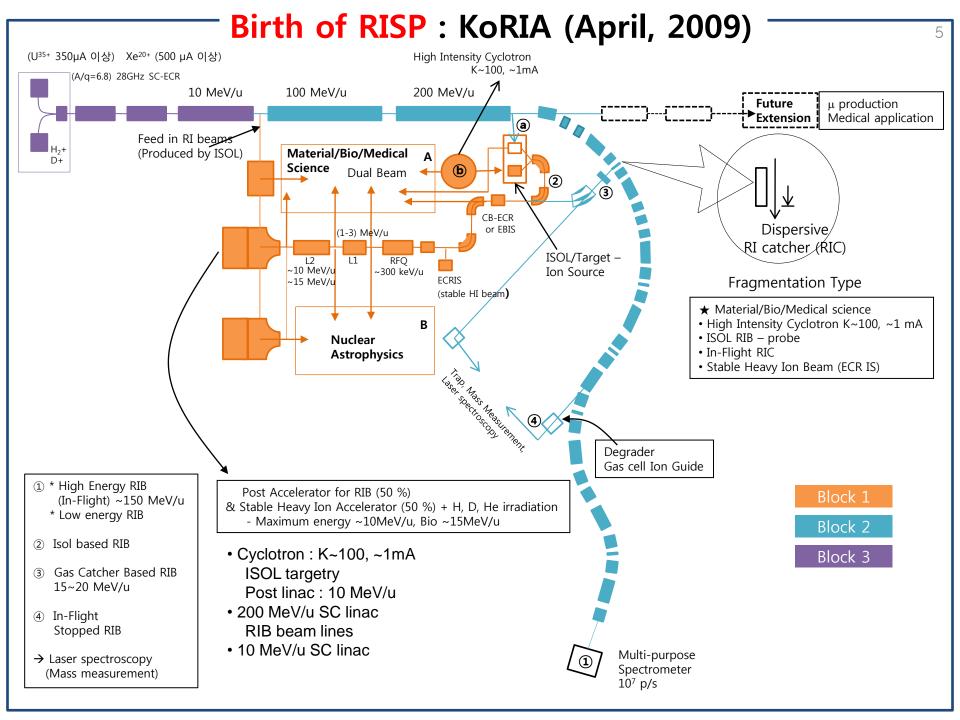


Brief History


- ISBB plan (2009.1): New Science Initiative in Korea
- Preliminary Design Study (2009.3-2010.2)
- Conceptual Design study (2010.3-2011.2)
- International Advisory Committee (2011.7)
- Institute for Basic Science(IBS) established(2011.11)
- Rare Isotope Science Project(RISP) launched(2011.12)

대한민국

Location: Daejeon


Organization of IBS (Institute for Basic Science)

- IBS consists of 50 research centers, supporting organizations, and affiliated research institutes
- Each Research Center: ~50 staff, average annual budget ~ 9 M USD.
- The number of staff: 3,000 (2017, including visiting scientists and students)
- Annual Budget: USD 610 million (2017, including operational cost for the Accelerator Institute)

RISP Status and Plan

- Conceptual Design report (Mar. 2010 Feb. 2011)
- IAC review (Jul. 2011 Oct. 2011)
- Rare Isotope Science Project started in IBS (Dec. 2011)
 Director Prof. Sunkee Kim
 Full budget for facility R&D approved by MEST
- Conceptual Design of the Building and Conventional Facilities (May 2012)
- Baseline Design Summary (by July 2012)
- Technical Design Report (by Jun. 2013)
- Ground Breaking (2014)

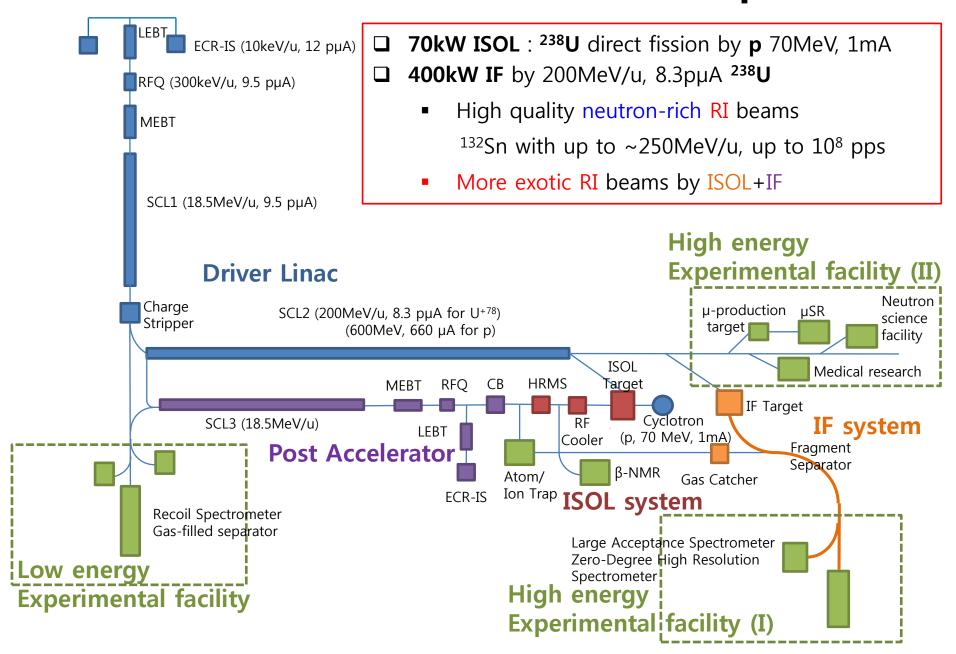
Key Science Drivers of RISP

Highest priority research subjects

- Nuclear reaction experiments important to nuclear-astrophysics : e.g. $^{15}\text{O}(a,\gamma)^{19}\text{Ne},\ ^{45}\text{V}(p,\gamma)^{46}\text{Cr}$
- Search for super heavy elements: Z > 113
- Nuclear structure of n-rich RI near N=126, 80<A<140
- Nuclear symmetry energy at sub-saturation density
- Precision mass measurement & Laser spectroscopy

Important scientific applications

- Material science : β-NMR, µSR
- Medical and bio-science
- Nuclear data for Gen-IV NPP and nuclear waste transmutation


Selected RI beams for Design

RI Beam species	Energy Range	Desired Intensity [pps]	Research fields
¹³² Sn, ¹⁴⁴ Xe	> 100 A MeV	10 ⁸ , 10 ⁶	Nuclear structure
¹⁵ O	< 10 A MeV < 30 keV	10^{10} 10^{8}	Nuclear astrophysics Material Science
^{26m} A	< 15 A MeV	10 ⁷	Nuclear astrophysics
45 V	0.6-2.25 A MeV	$10^7 - 10^9$	Nuclear astrophysics
⁶⁸ Ni, ¹⁰⁶ Sn, ¹³² Sn, ^{140, 142} Xe	10-250 A MeV	10 ⁹	Symmetry energy
^{6,8} He, ¹² Be, ²⁴⁻³⁰ O	50-100 A MeV	10^9	Nuclear Study with Polarized target
¹⁷ N, ¹⁷ B, ¹² B, ¹⁴⁻¹⁵ B, ³¹⁻³² AI, ³⁴ K	50-100 A MeV	10 ⁹	Nuclear Study with Polarized RI beam
⁶⁴ Ni, ⁵⁸ Fe (stable)	A few A MeV	10^{12}	SHE
⁸ Li, ¹¹ Be, ¹⁷ Ne	< 30 keV	108	Material science
¹³³⁻¹⁴⁰ Sn	< 60 keV	1	Atomic physics
⁸ B, ⁹⁻¹¹ C, ¹⁵ O	≥ 200 A MeV	$10^7 - 10^9$	Medical and Bio science

RAON: RISP Accelerator Complex

Development Plan

2009

LoIs from domestic users

- Science program with RI beams up to 200 AMeV
- 83 LoI's

(nuclear/astrophysics, nuclear data, standard model, biomedical, mass measurement, material science, ERD analysis)

2010

~ 2011

2011

2013

Science classification

- Nuclear science
- Atomic & Molecular science
- Material science
- Medical & Bio science

Facility specifications

- Beam specifications (energy, intensity, pulse width ...)
- Specifications of experimental facilities

R&D and Installation

- Spectrometer
- Detection system
- Beam line
- Apparatus for applied sciences

Day-1 experiments

Upgrade and extension

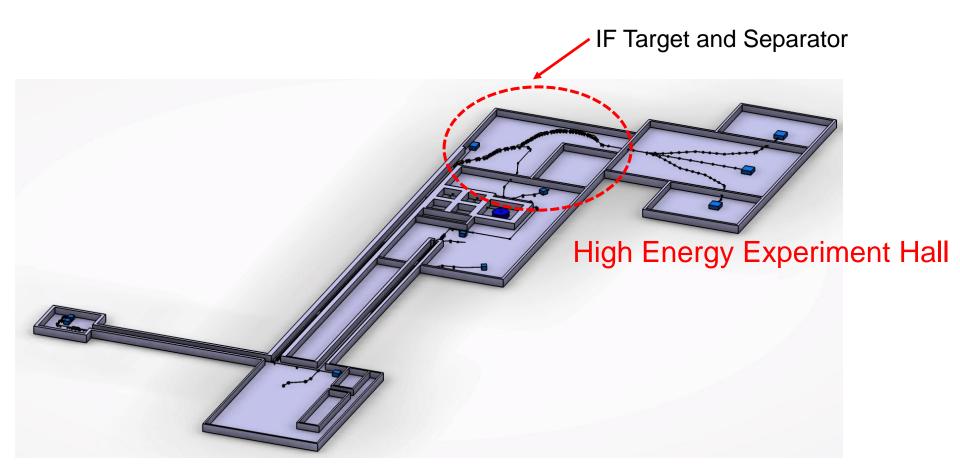
Refinement

- Based on Realistic modification of specifications
- LoIs for specified experiments (domestic + foreign)

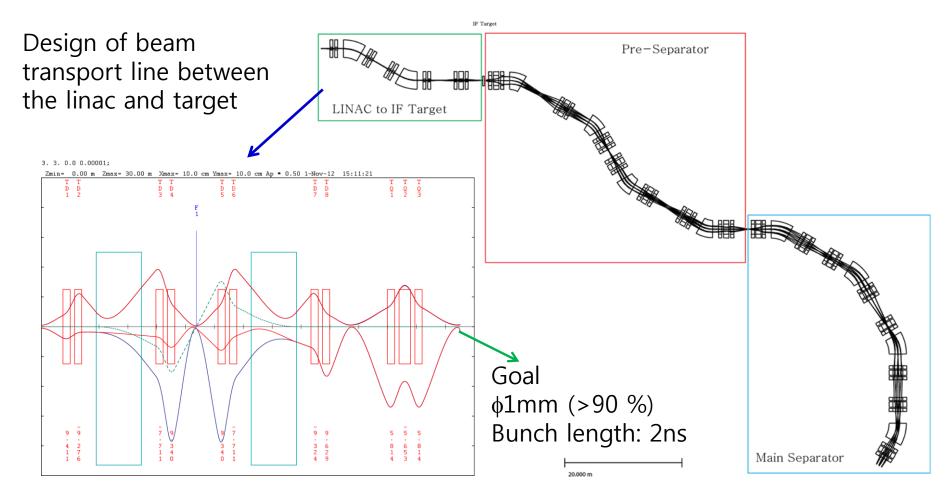
2013

2017

2017


2012

~ 2013



IF System

Low Energy Experiment Hall

Configuration of Fragment Separator

TRANSPORT, $^{238}U^{79+}$: $\Delta P = \pm 2.5 \%$

→ Calculation with DYNAC underway for multi-charge beam

Direct

radiative

21-Na at

38m-K β-v

correlations

Two-proton

at TRINAT

ISAC-I

capture with

RISP ISOL

Isotopic tracer

1930

technique by

von Hevesy

Becquerel discovers

The Curies discover

radioactivity

polonium

1900

Necessity

Objective

- Diverse experiments
- Need of neutron enrich isotope

Neutron-

6-He produced

in Copenhagen

application of

radionuclide

artificial

induced fission

tests

First mass measurement of short-lived nuclei at PS in CERN

Z=105 (Db)discovered in Dubna

Island of inversion at N=20 and shape

coexistence in proton-

Nobel Prize for

unified model

rich Hg at iSOLDE

NSCL Nobel Prize for nucleosynthesis

GANIL

scanner First in-flight fragmentation experiments at Berkeley

First application

of radiochemistry

to inertial fusion

target diagnosis

Neutron halos

discovered at

Measurement of

half-life of r-process nucleus at TRISTAN

Berkelev

- Design of 10 kW ISOL
 - Rare isotope ion source with high purity and high intensity
 - Especially our goal: 70 kw ISOL

First accelerated beam experiment (13-N) at LLN Measurement

of half-life of r-process nucleus at Studsvik

RIKEN

GSI

Momentum distribution of halo at RIKEN

Relativistic

excitation of

Coulomb

32-Mg at

discovered at

GSI and GANIL

RIKEN

100-Sn

emitters discovered at GSI and GANIL

Targeted alpha Laser ion therapy at IGISOL at source at ISOLDÉ Jyväskylä **ISOLDE** SPIRAL1

ISAC-I REX-ISOLDE

Shell structure Trapped changes in francium exotic nuclei at at Stony ATLAS/HRIBF/ Brook

NSCL

Shell structure of exotic 6-He enhanced nuclei with reaction cross knockout sections at reactions at TwinSol **NSCL**

Studies with accelerated 132-Sn and 82-Ge at HRIBF

> 21-Na β-v correlations at Berkeley

Charge radius of 6-He at ATLAS

78-Ni lifetime at NSCL

Parity 1960 Fermi builds violation in controlled fission Nobel Prize for First therapeutic reactor beta decay magic numbers Explanation of magic numbers First in-flight Radiochemistry separator at used to monitor Oak Ridge nuclear weapons

First ISOL

Explanation of

magic numbers

experiment in

Copenhagen

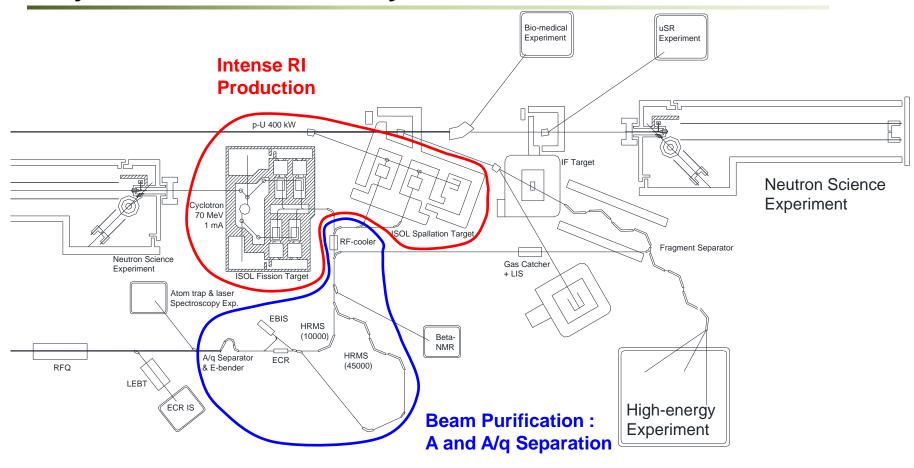
Z=100 (Fm)beta-NMR discovered

BBHF theory of nucleosynthesis

at ANI

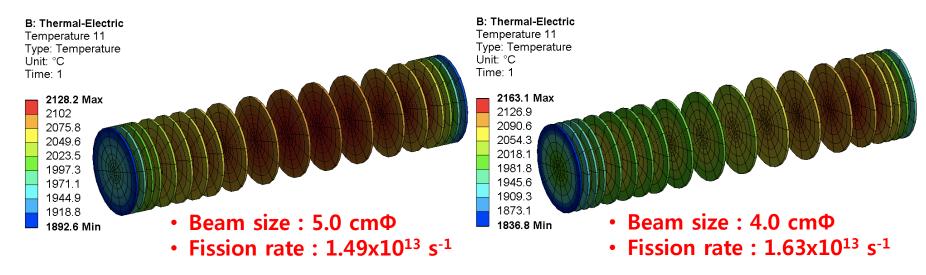
Dubna and McGill **ISOLDE**

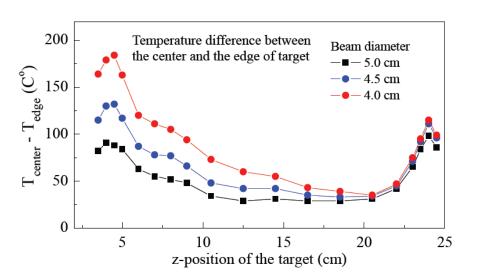
Beta-delayed

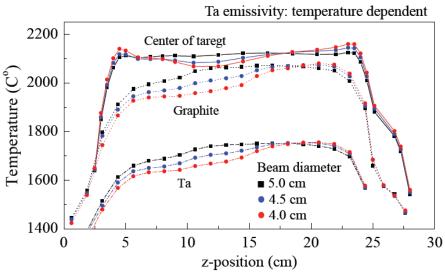

discovered at

proton radioactivity

Invention of PET

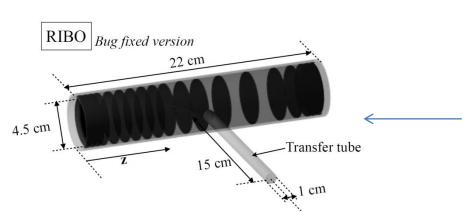

demonstrated

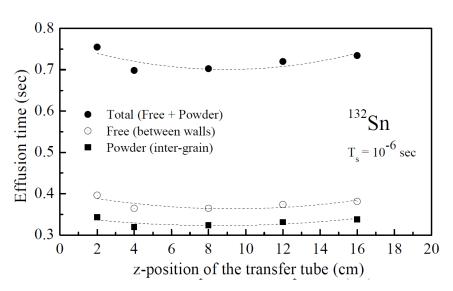

Layout of ISOL facility

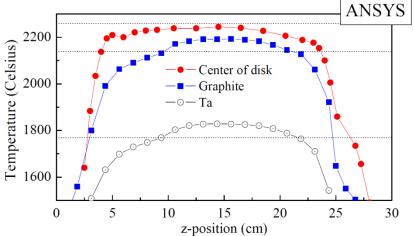


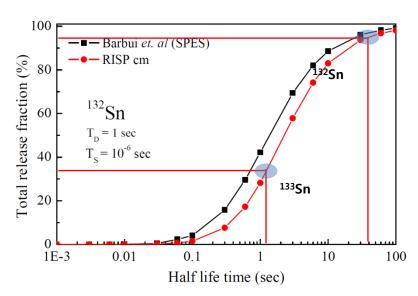
Target Assembly	ISOL Target / RI Ion Source / TIS Front-End	
RI separation	Pre-separator / RF cooler / HRMS / Charge Breeder / A/q Separator	
Conventional System	Utilities / Radiation Safety System / Beam Diagnostics	

Thermal analysis of 10 kW ISOL Target



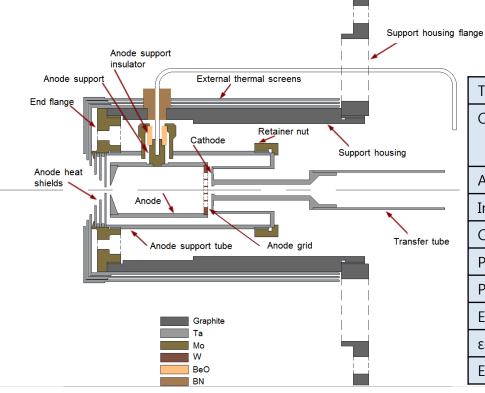

*UCx melting point : 2300~2400℃


Release efficiency of 10 kW ISOL Target



Transfer tube temperature : 2000 °C

Graphite temperature : 2061 °C (calculated from ANSYS)


 \mathcal{E}_{r} = 95 % for ¹³²Sn = 32 % for ¹³³Sn assuming the diffusion is 1sec

Technical design of FEBIAD Ion Source

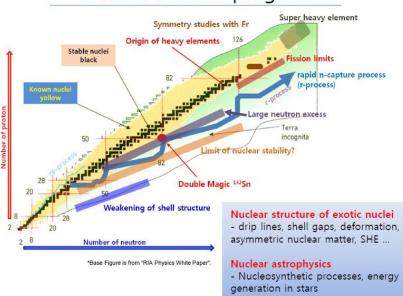
Purpose : To produce gaseous neutron-rich RI beams Design Goals

- Must be compact
- Must withstand high radiation field (~1 MGy)
- Compatible with standard connections/interfaces
- · Compatibility with Front End interfaces
- · Maximal efficiencies for the desired beams
- · Minimize Transverse emittance, energy spread

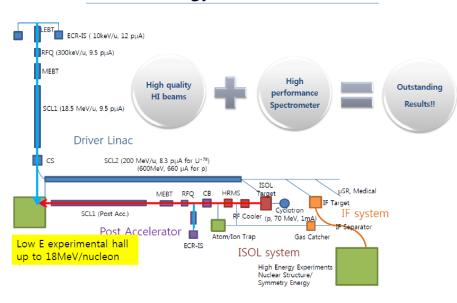
Design Sketch of the RAON FEBIAD ION source

Temperature	1500 - 2300°C	
Cavity	L = 2-3 cm Φ = 1-2 cm extr.: 0.5-3 mm	
Anode, Cathode, etc Materials	C, Ta, Mo, W	
Insulator	BN, BeO, Al ₂ O ₃	
Cathode Heating	Ohmic heat, 100-1000 W	
Plasma density	10 ⁷ -10 ¹⁰ /cm ³	
Plasma potential	70% of Anode V (50-100 V)	
E _{e-}	10-300 eV	
ε _{95%} @30kV	15-25 π mm mrad	
Extraction Potential	30 kV	

RISP Recoil Spectrometer



Objective


- Design of Recoil Spectrometer for low energy (<18.5 MeV/nucleon) nuclear and nuclear astrophysics study
 - * Cancellation of velocity dispersion with two Wien filters
 - * Large angular acceptance of < ±100mrad for more dissipative reactions

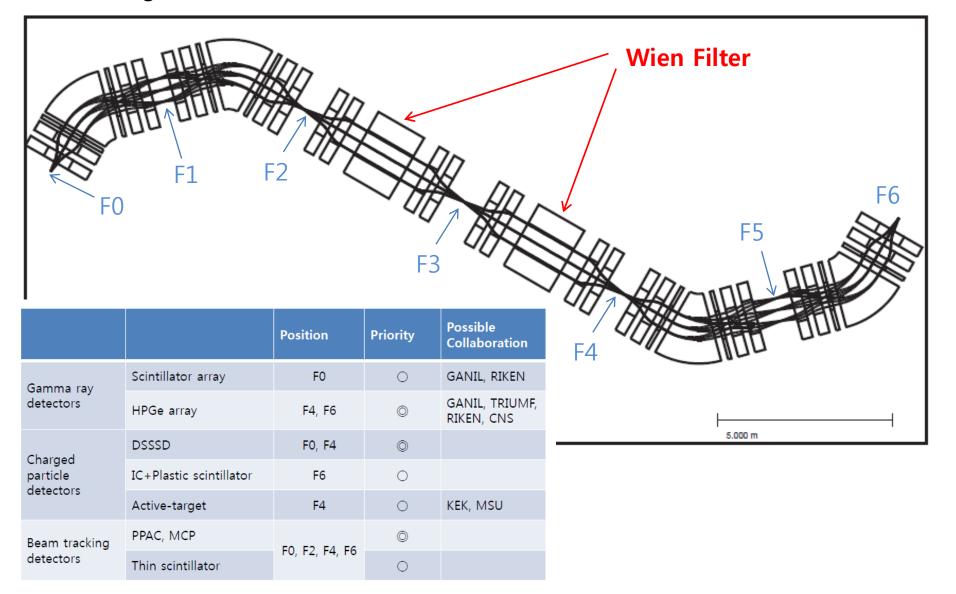
Necessity

Nuclear science program

Low energy beam scheme

• Main experimental facility for nuclear physics with SI (stable isotope) and RI (rare isotope) beams up to 18.5 MeV/nucleon

Preliminary result

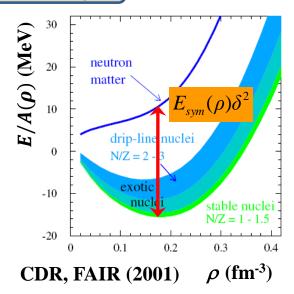

Design goal for recoil spectrometer

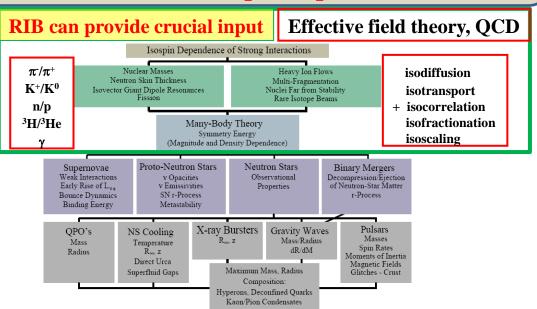
Maximum magnetic rigidity (T·m)	~ 1.5
Mass resolution (ΔM/M)	< 0.5 %
Momentum resolution (Δp/p)	~ 0.05 %
Angular acceptance (mrad)	< ± 100
Background reduction	< 10 ⁻¹²

Available experiments at the RISP Recoil Spectrometer

Physics topics	Measurements	
rp-process	radiative capture, transfer reaction, elastic/inelastic scattering	
s- & r-process	transfer reaction (d,p), decay measurement	
neutron drip line studies, halo nuclei	transfer reaction, scattering	
proton drip line studies	transfer reaction, fusion-evaporation reaction	
Super heavy elements search	fusion-evaporation reaction	

- Double achromatic focusing system using two electrostatic components Wien Filter
- Four dipoles + Twenty four quadruples + Eight multi-poles + Two Wien Filters
- Total length ~ 36 m

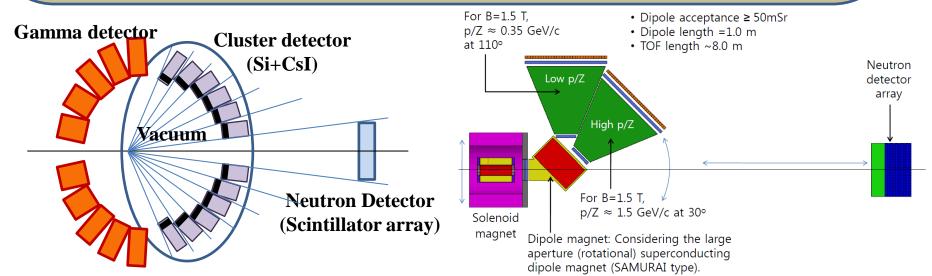

RISP Heavy-ion Collision Experiment



Objective

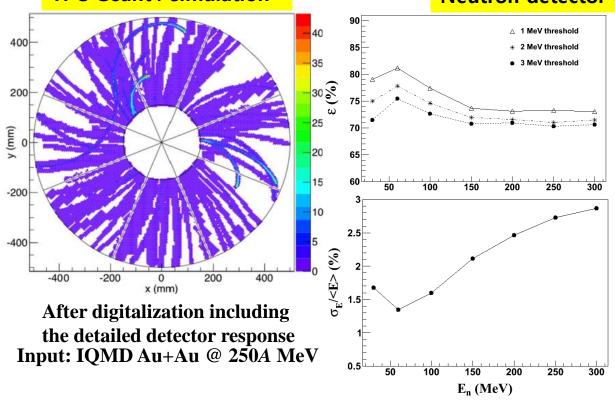
- Design of Heavy-ion Collision Experiment using RI beam
 - Study of Nuclear symmetry energy
 - * To cover entire energy range at RISP with complete event reconstruction within large acceptance ($3\pi Sr\ TPC\ \&\ \pm 5om Sr\ Dipole\ Spectrometer$)

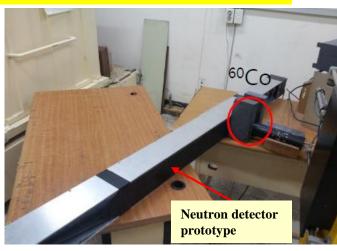
Necessity



- A.W. Steiner, M. Prakash, J.M. Lattimer and P.J. Ellis, Physics Report 411, 325 (2005)
- Red boxes: added by B.-A. Li
- System size (e.g. Ca, Ni, Ru, Zr, Sn, Xe, Au, U), energy (e.g. lowest to top energies), centrality, rapidity and transverse momentum dependence studies of Pigmy/Giant dipole resonance, Particle spectrum, yield, ratio, Collective flow, and more

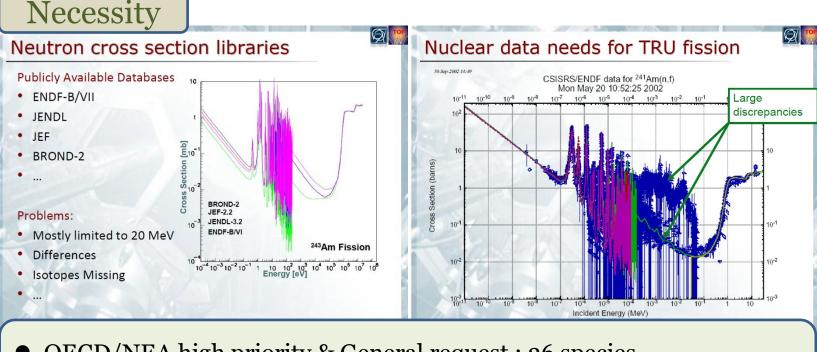
Performance at RISP


Rare Isotope


- 1. Design of experimental setup
 - For low energy ($E_{beam} = o 20 \text{ MeV/u}$)
 - For high energy (E_{beam} = 20 250 MeV/u)
- 2. Optics calculation for high resolution spectroscopy
 - Rotatable dipole magnet (~2T) and focal plane
- 3. Detector simulation and R&D
 - TPC ($\sim 3\pi$ Sr acceptance)
 - ΔE -E (Si+CsI)
 - MWDC (3 tracking stations)
 - ToF (σ_t < 100 ps for $\Delta p/p$ < 10⁻³ at β = 0.5)
 - Neutron Wall (capable for neutron tracking)
 - Gamma Array (for measurement of Pigmy/Giant dipole resonance)

Neutron detector Geant4 simulation and R&D

Test of neutron detector prototype with ²⁵²Cf and ⁶⁰Co

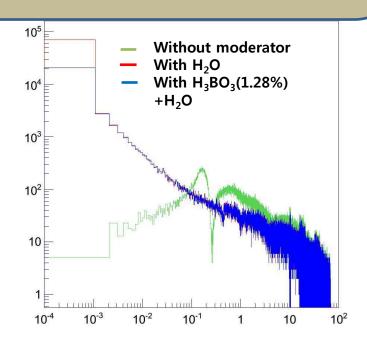


RISP Neutron Science Facility

Objective

- Design of Nuclear Data Production Facility
 - -Nuclear data: Total, Capture, Fission cross section(FC) etc.
 - * Especially within the uncertainty of 1 % for FC

- OECD/NEA high priority & General request : 36 species
 - E_n <20 MeV, Fission 13 species, Capture 10 species, Total 3 species


Performance at RISP

- 1. Simulation of neutron source
 - 70 MeV, 1mA proton(Cyclotron), Li target ± Moderator
- 2. Design of n-TOF system
 - Simulation for optimum condition of n-TOF by MCNP
- 3. Design of vacuum line and collimator
- 4. Design of detection system
 - Capture cross section : C₆D₆ detector
 - Fission cross section : TPC

Preliminary result

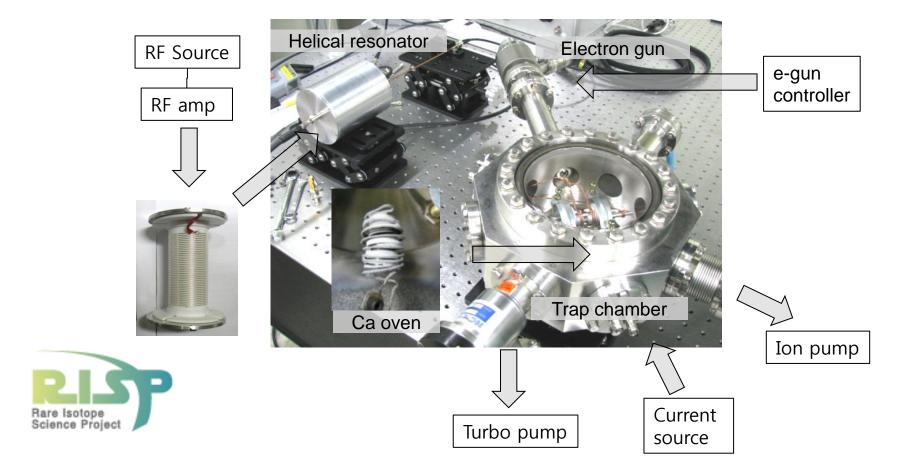
 Neutron spectrum for Li target with thickness of 17 cm for 70 MeV p beam, distance of 1 m from target, and radius of 1 m

RISP Precise Mass Measurement Facility

Objective

- Design of High Precision Mass Measurement Facility
 - Multi-Reflection Time-of-Flight for Isobaric Mass Separation
 - Highly Charged Ions for Accuracy Improvement
 - Sympathetic Laser Cooling Technique for Reducing Energy Spread : Mass resolution better : ~ 10⁻⁸ -> 10⁻⁹

Necessity


- Test of the conserved vector current hypothesis and the unitarity of the CKM matrix
- Nuclear masses far from stability to test new mass models
- Proton-neutron interactions and the new masses
- Understanding nuclear structure
- Probing and resolving isomer states of nuclides

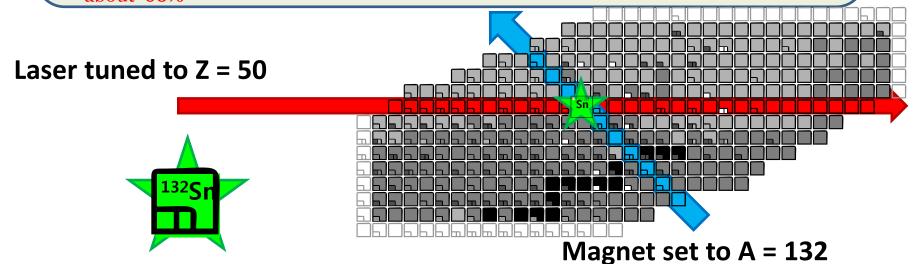
Target Specification

Relative mass accuracy: ~10⁻⁸ for short lived rare isotopes
 ~10⁻⁹ for stable nuclides

Performance at RISP

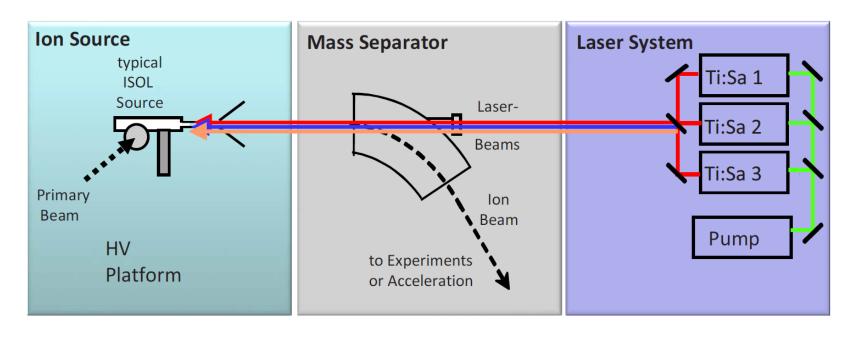
- 1. Simulation for ion motion in Penning trap
- 2. Analyzing the statistical and systematic uncertainty in mass measurement system
- 3. Building laser system for sympathetic cooling of Ca⁺ ions

RISP Laser Ion Source

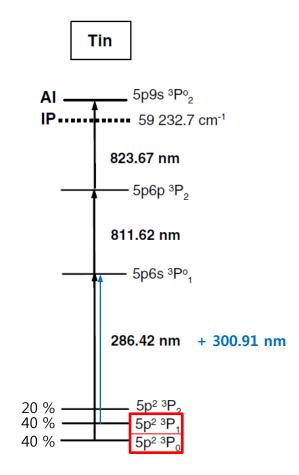


Objective

• For the production of **isobarically pure** & **highly efficient** beams of radioactive ions

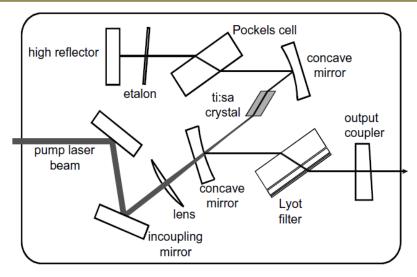

Necessity

- Due to unwanted **isobars** (same mass number A, but different proton number Z) emerging from the target, additional separation between nuclides with different proton number Z is required.
- **Laser Ion Source** based on resonant excitation is known to be the most efficient way to remove the isobaric contamination.
- Using two hyperfine ground level s : efficiency will be increasing (about 30% -> about 60%



Performance at RISP

- 1. Laser System Design (in progress)
- High repetition tunable Ti:Sapphire lasers (3 ea)
- Repetition rate: >10 kHz
- Tuning range: 700-1000 nm
- Line width: <5 GHz
- Power: ~5 W
- 2. Ion Source Design (in progress)
 - Hot metal cavity (T>2000 K)



Preliminary result

[Ionization scheme for Sn]

- Ionization efficiency of Sn: ~22 %
 (Oak Ridge National Laboratory)
 - Ionizer tube length: 30 mm
 - Initial state: 5p² ³P₀
- Improving the ionization efficiency
- 1) Optimization of the tube geometry : ~**80 mm** in length
- 2) Using **one more laser** (300.91 nm) to excite the atoms in two ground states
- → Estimated efficiency of Sn: ~60 %
- High repetition & tunable Ti:Sa laser design

[Layout of the Ti:Sa laser]

RISP Material Science Facility

Objective

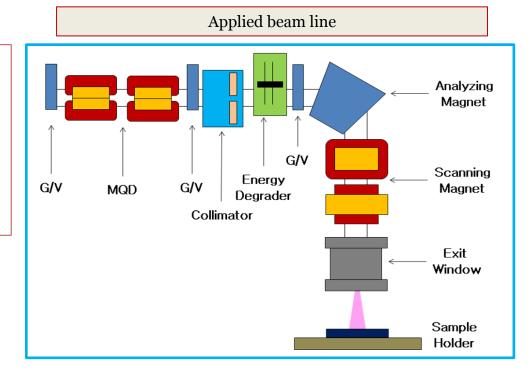
- Design of β -NMR and μ SR facilities
- 10~10³ times higher sensitivity than those of conventional analysis methods.

Necessity

- Lack of usable facilities and difficulties in securing beam time from the existing facilities
- Rapid increase in the number of user around the world

❖ Applicable research topics of β-NMR and μ SR

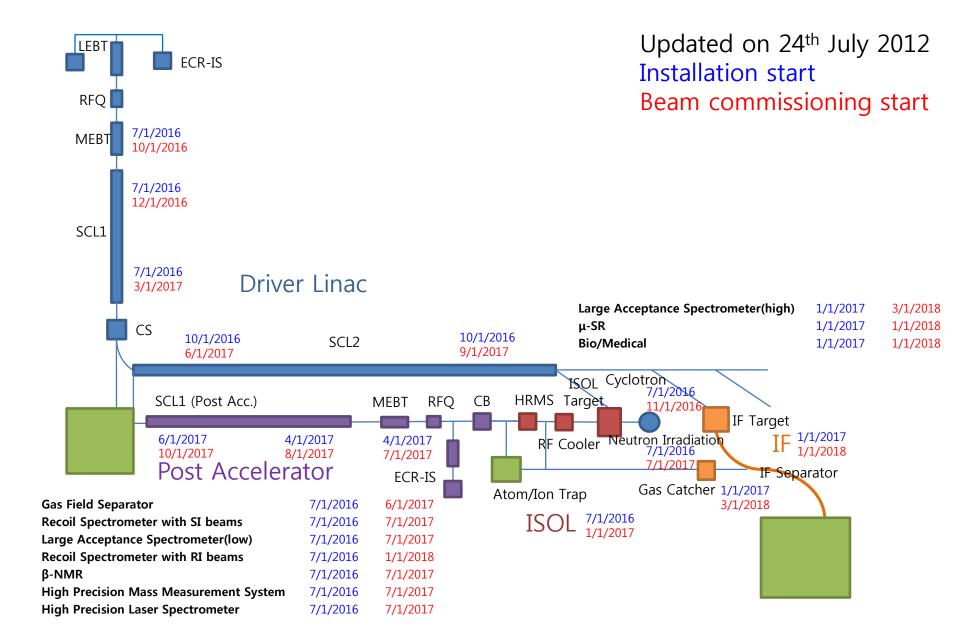
\clubsuit $\beta\text{-NMR}$ and μSR facilities operating in the world


Using muon and Li as probe	Using muonium as probe	β-NMR	μSR
 Magnetic materials and devices Colossal magnetoresistance Secondary batteries Thermoelectric Oxides Photo-induced magnetism Organic/Inorganic hybrid materials Heavy fermions Magnetic vortices Exotic superconductors Charged particle transport Frustrated magnetic system Charge dynamics at interfaces 	 Molecular structure and conformational motion of organic free radicals Hydrogen atom kinetics Green chemistry in supercritical CO₂ Catalysis Mass effects in chemical processes Reaction kinetics as probes of potential energy surfaces Electron spin exchange phenomena in glass Hydrogen in semiconductors 	TRIUMF (Canada) the only facility operating for material science in the world using a ⁸ Li beam about 1 month per year beam time	 PSI (Germany) - CW muon beam - Ultra low-energy (0.5~30 keV) muon beam - total 6 ports TRIUMF (Canada) - CW muon beam - total 4 ports ISIS (UK) - Pulse muon beam - Ultra low-energy muon beam J-PARC (Japan) - Pulse muon beam

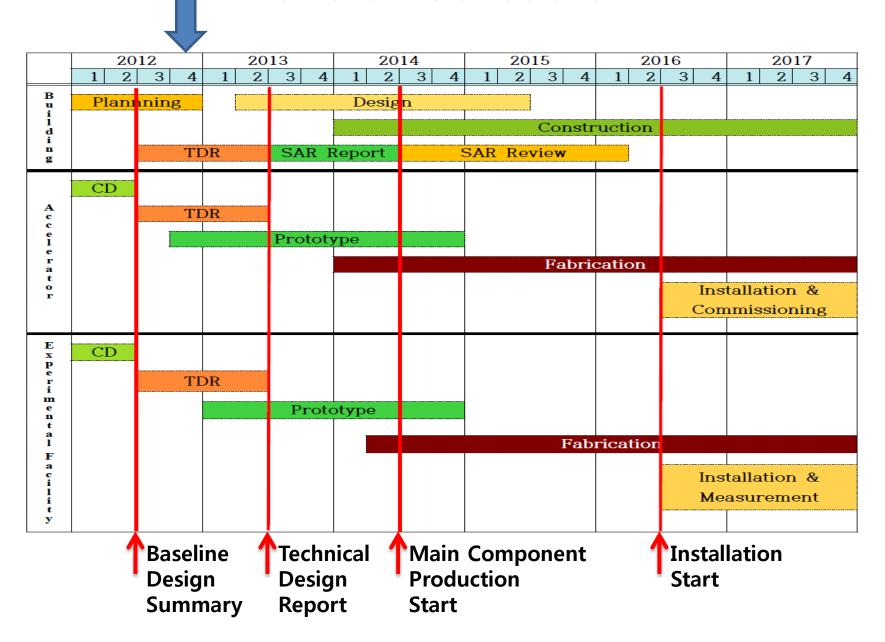
RISP Bio-Medical Science Facility

Beam line design

- Electromagnet and power supply system
- Beam diagnostics system
- Vacuum system
- Cooling system
- Sample target system
- Control system



Specification


- Irradiation from perpendicular beam line
- Beam irradiation size : 5~20 cm
- Beam window for atmosphere irradiation
- Cooling system to prevent heat
- Beam energy degrader for control

Schedule

Overall Schedule

