

Gas-filled recoil separator at IMP

GAN Zaiguo and IMP SHN group Institute of Modern Physics, Chinese Academy of Sciences EMIS 2012

Introduction

Construction of Gas-filled Recoil Separator

The test experiments

summary

Introduction

Facilities: Heavy Ion Research Facility in Lanzhou (HIRFL)

National Laboratory of Heavy Ion Accelerator in Lanzhou

Cyclotron for Synthesis of SHN

He Jet Set-up

Measuring α from the mother nuclide Catching the recoil daughter on the detector surface

Cross section >100 pb. Half-life> 50 ms. Limit: α decay superheavy nuclide with Z≤108.

Without source, measuring α from the daughter Correlation between the mother and daughters.

Gas Filled Separator at IMP

Location

HIRFL-CSR

Gas-filled recoil separator in Lanzhou

Position Sensitive Silicon Detector

Active area: 58 mm * 58 mm Strip Number: 16 (vertical) Width of one strip: 3.6 mm Thickness: 300 µm Manufacture: CANBERRA

➤Energy resolution (FWMH): ~50 keV (²¹²Po-8.785MeV)

>Position resolution (FWMH): ~1.5 mm (ER- α)

First fusion reaction experiment: ⁴⁰Ar + ¹⁷⁵Lu -> ²¹⁵Ac* (Z=89)

On-line spectrum

Equilibrium charge state

"density effect"

$$(B\rho)_{ion} = (B\rho)_0 \cdot (1 + x/100D)$$
$$q_{ave} = 0.0227 \cdot A \cdot (v/v_0) / (B\rho)_{ion}$$

Transmission Efficiency

D. Vermeulen, et al. Z. Phys. A, 1984, 318(157).

- Beam intensity: 1 eµA
- Helium gas pressure: 0.84 mbar
- Magnetic rigidity: 1.73 Tm
- Counting rate of the decay of ^{211,210}Ac: 300 counts/min
- Detection efficiency: 50%
- ◆ Abundance of ¹⁷⁵Lu: 97%
- Production cross section of
 ^{211,210}Ac: 68.8 μb
- Transmission efficiency: 14%

First test experiment: ²⁰⁸Pb(⁶⁴Ni, n)²⁷¹Ds

Rotating Target

- To avoid the melting of ²⁰⁸Pb target, the rotating target system and sandwiched targets were prepared in the experiment.
- During the irradiation, the target wheel rotated at the speed of 600 rpm.
- The simulated highest temperature of target was about 350 K lower than the melting point of lead(600 K).

Schematic Diagram of Data Acquisition

One α -decay chain assigned to 271Ds

271Ds

-21.8 mm

96.8 ms

6.63 s

0.644 MeV

 α_1

272Ds

New Detector System

Si-box detector:

Stop detector: 3×50mm×50mm (active area), position-sensitive detectors (each has 16 vertical strips), 300μm (thickness)

Side detector: 8×50 mm $\times 50$ mm (active area), non-position-sensitive detectors Veto detector: 3×50 mm $\times 50$ mm (active area), non-position-sensitive detectors

TOF detector (Multi Wire Proportional Counter):

80mm \times 180mm (active area), 0.5 μ m mylar window, isobutane gas (2 mbar)

Photos

Silicon-box detector

Time-of-flight detector

Micro-Channel Plate detector

Multi-Wire Proportional Counter

$^{40}Ca + ^{175}Lu - >^{215}Pa^*$

Observed in the bombardment ⁴⁰Ca+¹⁷⁵Lu with an energy of 4.83 MeV/u Without the veto detector With old beam dump, the total counting rate was up to 300 events/s

Total spectrum of silicon detector

 α -decay spectrum

$^{40}Ca + ^{169}Tm - >^{209}Ac^{*}$

Observed in the bombardment ⁴⁰Ca+¹⁶⁹Tm with an energy of 4.84 MeV/u
 Three veto detectors were mounted downstream of the stop detector
 With the modification of beam dump, the total counting rate decreased to 120 events/s

40Ca+169Tm->209Ac*

 α -decay spectrum

The data for Ca+Lu and Ca+Tm experiments are analyzed in progress.

Future Plan

Gamma array 8 Clovers + 16 HPGes 4 HPGe 26.15° 210 mm 4 HPGe 51.7° 200 mm 8 Clover 90° 180 mm 4 HPGe 128.3° 200 mm 4 HPGe 153.85° 210 mm

Study of Super-Heavy Nuclei

Beam intensity is about several pµA. Gas filled separator is ready.

Study the chemical properties of SHE, the reaction mechanisms to produce SHN and the structure in heavy nuclei.

Summary

- Lanzhou gas-filled recoil separator was reported.
- In the future, with the improvement of the performance of the separator, the structure of heavy or superheavy nuclei and the synthesis of heavier nuclei will be studied.

GAN Zai-Guo, HUANG Tian-Heng, HUANG Ming-Hui, MA Long, ZHANG Zhi-Yuan, WU Xiao-Lei, JIA Guo-Bin, LI Guang-Shun, YU Lin

REN Zhong-Zhou, ZHOU Shan-Gui, ZHANG Yu-Hu, ZHOU Xiao-Hong, XU Hu-Shan,XIAO Guoqing, ZHANG Huan-Qiao,YE Yan-Lin

Thank you for your attention!