Wear diagnostics of industrial material using RI beams (RNBs) of 7Be and 22Na

 $\sim$  Beam & performance study  $\sim$ 

Atsushi Yoshida Industrial Cooperation Team Nishina Center, RIKEN

\* Wear diagnostics using RNB (history)

\* Available RNBs at RIKEN

\* Measured surface and depth profiles of the implanted activity



## RNB utilizing for wear diagnostics



of course, High-intensity ISOL + post-accelerator facility may be the best for this application.



(Advantages)

- \* On-line & real -time test under working condition changing test parameters
- \* need not disassemble for wear measurement
  - $\rightarrow$  "real test" saving time & cost

(Disadvantages)

- \* need unsealed RI source treatment facility
- \* facility & beam cost

# Activation method (history -1)

\* neutron activation

entire component is activated ( > 100 MBq), fugue RI waste, needs thick shielding

\* ion-beam activation ; only near surface

 mid. '1970 ~
 ref.) M.Yamamoto, JRIA Radioisotopes, 45(1996)700

 Radionuclide Technique in Mechanical engineering (RTM)

 Karlsruher Institute (FZK,KIT), Germany

 Thin Layer Activation method (TLA)

 A.E.R.E., Harwell, England

 Surface Layer Activation method (SLA)

 Spire Corp., USA

#### <u>14N</u> 17-35MeV/u, 100pnA + Carbon -> 7Be, 22Na W.C.McHarris, M.L.Mallory (MSU, NSCL), et.al Nucl.Phys.A353(1994) 583, N.P.A299(1990)593, N.P.B40/41(1989)579

### \* direct beam activation



SHIEI Ltd. "irradiation service" beam : p 18MeV. d 10MeV. 3He 24MeV Activation  $\sim$  MBq Sensitivity  $\sim$  0.1  $\mu$  g/h  $\sim$  10 nm/h

| Material    | <sup>56</sup> Fe | 27 <sub>Al</sub> | <sup>65</sup> Cu | <sup>52</sup> Cr | <sup>48</sup> Ti | <sup>120</sup> Sn |
|-------------|------------------|------------------|------------------|------------------|------------------|-------------------|
| RI produced | <sup>56</sup> Co | <sup>22</sup> Na | <sup>65</sup> Zn | <sup>51</sup> Cr | <sup>48</sup> V  | 120mSb            |
| Life time   | 78.8d            | 2.6y             | 244.1d           | 27.7d            | 16.0d            | 5.8d              |

### limitation for material component

\* long-life RI should be produced

for metal : OK for organic : difficult

- \* interference from unnecessary contaminant RI
- \* material damage

by heat up & irradiation damage

## Activation method (history-2)

### $\rightarrow$ Recoil RI implantation



 $C(3He, 2\alpha)$  7Be recoil

T.Sauvage (CNRS-CERI, France) et.al., NIM B143(1998)397-402 M.F.Stroosnijder, et.al. NIM B227(2005)597-602

#### difficulties

 \* scattered primary beam implanted, also
 \* recoil RI ; angular distrib. & low-energy difficulty for controlling implantation depth



\* for any component material
\* lower radiation & heat damage
\* variation of RI tracer



## available RNB for industrial applications @ RIKEN



### 22Na beam at RIPS

ref) T.Kambara et.al, AIP Conf. Proc. 1412, 423(2011) R.Uemoto et.al, JSAE Annual Congress, 143-20115142

Primary :  ${}^{23}Na^{11+} 63 \text{ MeV/A} \sim 1 \text{ p} \mu \text{ A}$ Target : Be 1.5 mm, dE = 300 Watt Separator : F1 deg Al 1.2mm F1 slit dP/P =  $\pm 1.5\%$ RNB : E( ${}^{22}Na$ ) = 26.6MeV/A 1.5E+8cps  $\phi \sim 3$ cm Depth profile in Al-Foil (6um) stack



measured by Imaging Plate (IP-SR)



Irradiation in Air

## 22Na beam at RIPS

rig test sample  $\phi$  3x15mm Al, Fe, Bi, Mo, etc.









## 7Be beam production at CRIB





### 7Be beam at CRIB



Aluminum Foil (2  $\mu$  m x 20) Stack

after irradiation, put them on a I.P. film









#### Imaging Plate (IP) : Ba F Br :Eu 2+ Photostimulated luminescence film

I.P. film : GE health care, BAS IP (SR/MS) 2040E IP image analysis ref.) K.Takahashi et.al. JAEA-Tech 2008-028

#### intensity of 7Be- $\gamma$ ray (477keV) was measured by Ge & I.P. detectors, then compared. normalized by total intensity of all films.

 → \* "relative " intensity of Ge & I.P. well correspond.
 \* using I.P. data implanted RNB spot-profile can be analyzed (nominal resolution < 50 µ m)</li>

## 7Be beam at CRIB





depth : max. 25  $\pm$  5  $\mu$  m (in AI)

## 7Be beam at CRIB

wear loss sensitivity (estimation)



EMIS2012 RIKEN A.Yoshida

## Summary

\* Two intense RNBs are available for wear diagnostics.
22Na: 26.6 MeV/u 1.5x10<sup>8</sup> cps <sup>~</sup> 5 kBq / 1 hour irradiation 7Be : 4.1 MeV/u 1.9x10<sup>8</sup> cps <sup>~</sup> 10 kBq / 1 h

they can be utilized for wear diagnostics of metal, ceramic, plastic, etc.

\* for 7Be

1 day irradiation : peak 30 kBq /  $\mu$  m , max. depth 25±5 $\mu$  m in Al is available.

I.P. can be used for beam-spot shape analysis of each implantation depth.

Thank you for your attention