

Recent developments of target and ion sources to produce ISOL beams

Thierry.stora@cern.ch

Target and Ion Source Development, ISOLDE (EN-STI-RBS)

(with the contributions of many colleagues)

THE BIRTH OF ON-LINE ISOTOPE SEPARATION

O.Kofoed-Hansen K.O. Nielsen Dan. Mat.Fys.Medd. 26, no. 7 (1951)

10 MeV deuterons d-to-n converter (Be) n moderator (wax) UO_2 (10 kg) Baking powder

T. Stora – TISD – EMIS 2012 - Matsue

From CERN 76-13, 3rd conf. nuclei far from stability What's new since 2007 ?

World map of radioisotope ion beam facilities*

199192

640

ISOL Beam intensity

One of the many ISOL facilities...

199192

4C49

Beams at operating ISOL facilities

ISOL(DE) targets and ion sources

ISOLDE UC, pressed pellets

Target materials (30):

- Refractory oxides carbides (Al₂O₃, SiC, UCx, nano Y2O3)
- Solid metals (Ta, Nb, Mo)
- Molten metals (Pb, La, Sn)
- Molten salt (NaF-LiF)

199192

-40

Evolution of yields over years: Rb from UCx

Release properties of Kr isotopes from submicron Y₂O₃ target

Online yield of n-def ⁷⁰⁻⁷²Kr

Release curve from Y_2O_3 sub-micron target vs Nb foils (30µm)

50 s. Traces of another previously unobserved isotope Kr⁷³ were also seen but were insufficient for measurements. The

Yields of ⁷²Kr have been improved by x10 from 2 10³/ μ C to 2 10⁴/ μ C (combining prod cross section, target thickness, release efficiency and ion source efficiency)

And what about their stability vs irradiation time

72Kr from nano Y2O3 vs 35Ar from nano CaO

72Kr rate #475 YO_VD7

³⁵Ar beam over time

New generation of targets

Have demonstrated increased yields from nano/sub μm SiC, Y₂O₃, CaO targets Constant yields demonstrated over extended periods UCx targets under development (ActILab, in FP7 ENSAR program) High power composite solid targets developped at TRIUMF (and also for EURISOL)

1st Targets used at CERN-PS for alkali metals

11000

1000

9000 8000

7000 6000

1000

T~ 1550° C

Target preparation: 5cm long, 6mm diameter. 36x 70μm C, 1-10 μ m (1-8mg/cm²) U compound, 100 μ m gap: tot 0.3g/cm² U Operated at ca 1500°C

 $UO_2(NO_3)_2.6(H_2O)$ layer, converted to UO_3 at 200°C Heated further to obtain U_3O_8 / UC /UC₂ / oxycarbide

(10.5GeV p on ThCx) Rb release

Phys Rev Lett, 1968

(p 10-24 GeV)

cale graphite

R. Klapish et al. (UCx at CERN-PS&IPNO/CSNSM, 1967)a from Ir/C target

protons

Current UC_x targets : SEM / FIB

as prepared (≤1850 °C)

ActILab, A. Gottberg, C. Degueldre Et al

And high density UC targets (ie max # of fissions)

Purification by selective trapping

Plasma

ion source

Ð

300 350 400

Rolled 25-µm Nb-foils

in target tube

Water-cooled

transfer tube

900

600

500

400

300

200

٥

50 100

월 700

T1 - Offine T2 - Offine

T1 - Online

T2 - Online

150 200 250

External heating (W)

-0-

199192

40

T. Stora - TISD - EMIS 2012 - Matsue

Purification of ⁸⁰⁻⁸²Zn&¹³⁰Cd beams

190

126Cs yield function of quartz temp Fit with Δ Hads = - 145 +- 20 kJ/mol as only free parameter Isothermal vacuum chromatography is ca -180 kJ/mol

E. Bouquerel et al., Nucl Instr. Meth B266, 4298 (2008)

80Rb yield function of quartz temp Fit with Δ Hads = - 242 +- 20 kJ/mol as only free parameter Isothermal vacuum chromatography is ca -270kJ/mol

Purification by selective trapping

 Δ T=200-1400°C to suppress Alkalis (Cs, Rb)

126Cs yield function of quartz temp Fit with Δ Hads = -145 +- 20 kJ/mol as only free parameter Isothermal vacuum chromatography is ca -180 kJ/mol

E. Bouquerel et al., Nucl Instr. Meth B266, 4298 (2008) T. Stora – TISD – EMIS 2012 - Matsue

199192

- > Full cocktail of possible phenomena.
- > Not all appearing all over the variation range of the operation parameters.
- Some of them can be neglected at the nominal parameters.
- > Application range has been investigated (experiment vs. theory).
- Performance limitations could be pointed out, justified and removed

T. Stora – TISD – EMIS 2012 - Matsue

145 V 140 V

135 V 132 V

125 V 120 V 110 V

Z (mm)

Yield gains with new VADIS source

Novel VADIS ion sources

Yields on noble gases: x5-10 vs previous figures ²²⁹Rn, D. Neidherr et al., Phys Rev Lett 102, 112501 (2009) Other elements : improvements, eg Hg and Cd beams :

> x5

Ongoing tests of laser ion source in VADIS cavity for refractory elements

L. Penescu et al. Rev. Sci. Instr. 81(2), 02A906 (2010)

experiment,

μA,

And FEBIADs elsewhere

Hot Plasmanon Source.

September 06-10, 201019th International Conference on Cyclotrons and their Applications, Pierre Bricault

Rev. Sci. Instrum. 83, 02A911 (2012) Talk O. Bajeat, Wakasui-San, poster S. Essaba,)

Cold plasma RF sources and chemical aspect sfor C beams

M. Kronberger, C. Seiffert et al. T. Stora - TISD - EMIS 2012 - Matsue

Improvement of solid spallation source for fission fragments

Improvement of fission product yields (for ex. ⁸⁰Zn, ¹³⁰Cd) and further reduction of isobaric contaminants (⁸⁰Rb, ¹³⁰Cs)

80

Neutron Number N

1e-01

100

120

R. Luis et al. Eur. Phys J. A 2012

T. Stora – TISD – EMIS 2012 - Matsue

140

10

And more spallation sources: High power targets for $p.\mu A$ RIBs

Eur. Phys. Lett. 98, 32001 (2012); Highlighted in Europhysics news

Molten salt target for β -beams 18Ne beams (v emitter)

How many ISOL elements will be produced ?

Who said the yields is (only) a question of the driver power) ?

 GdB_6 ion source cavity + RILIS

T. Stora – TISD – EMIS 2012 - Matsue

199192

Thank you for your kind attention!

Target mass related to beam intensities

100 8mm diam U/C composite foils, 5-10mg/cm² U, tot ~1g/cm² U, 1600°C (C Thibault et al., Phys Rev C, 1975)

R. Cardinale, T. Stora EURISOL-DS, poster final town meeting Pisa

How to model release properties of

$\rho_{\text{bulk}}\text{=} 3.5\pm0.8 \text{ g/cm}^3$

11.3 g/cm³ (TD)

BET: 2.6±0.9 m²/g

adioactive isotopes from this material?!

