

Status and plans for recoil separators for experiments with intense stable beams from ATLAS

Darek Seweryniak Argonne National Laboratory EMIS 2012, December 2-7, 2012

Outline

- ATLAS
- Argonne Fragment Mass Analyzer
- ATLAS upgrade
- FMA upgrades
 - Beam dump
 - New entrance quads
 - MCP
 - 160X160 DSSD
 - Digital DAQ
- Argonne Gas-Filled separator
- SUPERB

Argonne Tandem Linac Accelerator System

Beams from protons to Uranium with energies 10MeV/nucleon+

See talk by Richard Pardo on Friday about radioactive beams

Argonne Fragment Mass Analyzer

C. N. Davids et al., Nucl. Instr. Meth., B 70, 358 (1992).

Argonne Fragment Mass Analyzer

Mass resolution: $\delta M/M \sim 1/350$ Angular acceptance: $\Delta \Omega = 8 \text{ msr}(2 \text{ msr})$ Energy acceptance: $\Delta \varepsilon/\varepsilon = +/-20\%$ M/Q acceptance: $\Delta (M/Q)/(M/Q) = 10\%$ Flight path 8.2m Max(Bp)=1.1Tm Max(Bp)=20MV Can be rotated off 0 degrees Can be moved along the axis Different focusing modes

GAMMASPHERE+FMA

Important component of the experimental program at ATLAS since its commissioning in 1992 (~200 papers)

- Proton drip-line
 - Proton emitters
 - new α emitters
 - In-beam γ rays
- ¹⁰¹Sn
- Transfermium nuclei: No, Lr, Rf
- Transfer on ⁵⁶Ni and ⁴⁴Ti
- •••

Fusion-evaporation, deep-inelastic, transfer reactions

Preparation for high intensity ATLAS beams

- Undergoing ATLAS efficiency and intensity upgrade to be completed in 2013 will provide ~10x more intense beams (see talk by R. Pardo)
 - New positive ion injector
 - New cryo module to replace some split-ring resonators
- FMA experiments (with heavy nuclei)
 - Current ~10s pnAs (~100s pnA), implantation rates ~several kHz
 - Future ~100 pnAs (~1000s pnA), implantation rates ~several 10s kHz
- Experimental upgrades
 - FMA upgrades
 - Focal plane detector upgrades
 - Argonne Gas-Filled Separator (design)

New beam dump

- First electric dipole limited the beam intensity for certain reactions
- Segmented anode was installed in 2002
- However, beam used to strike the inside of the anode and the tank near the exit relatively close to the anode
- Now the beam leaves the tank through a slit and is stopped in a suppressed Faraday cup outside of the tank

New ED1 tank

Faraday Cup

- Slit in the tank wall
- Beam dumped on a Ta plate
- Entrance slit kept at positive potential with respect to the Ta plate to suppress electrons knocked out of the plate

New entrance quads

- 1st quad shorter with larger tip field
- similar concept was used in EMMA
- Increases the solid angle from 8 msr to 12 msr at 30 cm between target and FMA
- Only small gain at 90 cm

Courtesy of B. Davids

FMA at 293 mm

OLD: $\Theta_y=0.038 \text{ rad}$ $\Theta_{y,max}=0.0401 \text{ rad}$

NEW: Θ_y =0.060 rad $\Theta_{v,max}$ =0.0634 rad

 $Q_x=0.046 \text{ rad}$ $\Omega=7.4 \text{ msr}$ $\Theta_{x,max}=0.0495 \text{ rad}$

 $Q_x=0.059 \text{ rad}$ $\Theta_{x,max}=0.0591 \text{ rad}$

 Ω =11.8 msr

Large-area high-resolution micro-channel plate focal plane detector

- Large area to cover the whole focal plane (4X12 cm²)
- Position resolution < 1mm
- High rate capabilty (100 kHz)
- Three micro channel plates for large multiplication/efficiency

Photonis Inc., USA

Permanent magnets to limit diffusion of electrons to achieve better position resolution

D.Shapira etal., Nucl. Instr. and Meth. in Phys. Res. A 454 (2000) 409

High-granularity implantation-decay DSSD

....

160x160 strips 64mm x 64 mm 100, 140, 1000 μm thick

14

X-array

- 5 clover detectors in a box geometry
- 64x64 mm, 160x160 DSSD
- Mobile frame

FMA Digital DAQ (based on GRETINA)

- Trigerless
- DSSD (320 chans)
- X-array (20 chans)
- focal plane (20 chans)
- Resolution comparable to analog (Ge/Si)
- Pulse shape analysis
- 100 kHz/DSSD possible

100MHz, 14-bit Digitizer

M. Cromaz et al., A 597 (2008) 233-237

Trigger and Time control module

J.T. Anderson et al., 2007, IEEE Nuclear Science Symposium Conference Record, p. 1751

Argonne Gas-Filled Separator - AGFA

¹B.B. Back, ¹R.V.F. Janssens, ¹W.F. Henning, ¹T.L. Khoo, ¹J.A. Nolen, <u>¹D.H. Potterveld</u>, ¹G. Savard, ¹D. Seweryniak, ³M. Paul, ²P. Chowdhury, ⁴W.B. Walters, ⁵P.J. Woods, ⁶K. Gregorich ¹Argonne National Laboratory, Argonne, ²University of Massachusetts Lowell, ³Hebrew University, ⁴University of Maryland, ⁵University of Edinburgh, ⁶Lawrence Berkeley National Laboratory

- Use combined-function magnets
 - Overlapping bending, focusing fields
 - Fewer magnets, ultra compact design
 - Innovative QvDm design
- Design parameters
 - 33° bend
 - 2.5 Tm
 - 4.0 m total length (3.7 m at 40 cm)
 - 80 cm target-separator (Gammasphere) 22.5 msr
 - 40 cm target-separator (stand-alone) 42 masr
 - Compact focal plane(~5cm x 5 cm)

AGFA optics and parameters

Quad length	48 cm
Quad bore	22 cm
Quad peak pole-tip field	1.24 T (2.5 Tm, 40 cm tgt)
Quad-dipole separation	75 cm
Dipole center gap	11 cm
Dipole bend angle	33 deg
Dipole bend radius	2.0 m
Dipole edge angle	-36 deg
Dipole peak field	1.7 T (2.5 Tm)
Peak X excursion	± 30 cm
Dipole-F.P. separation	92 cm (40 cm to tgt), 83 cm (80 cm to tgt)
Beam profile at target	$\Delta X = 5.0 \text{ mm FWHM}$ $\Delta Y = 2.0 \text{ mm FWHM}$

AGFA - 3D magnet design

²⁵⁴No test case

⁴⁸Ca + ²⁰⁸Pb
$$\rightarrow$$
 ²⁵⁴No + 2n
E_{beam} = 220 MeV

- 1 Torr He, 5 x 2 mm beam spot
- ²⁵⁴No angular distr: Gaussian, σ = 51 mrad
- ⁴⁸Ca stripped, (C foil) q_{bar} = 17.1
- 89% of ²⁵⁴No transported to focal plane
- 71% fall within a 64 x 64 mm² DSSD
- Solid angle to DSSD is 22 msr
- Beam is well separated

Simulations still undergoing

Focal plane distribution

Separator for Unique Products of Experiments with Radioactive Beams - SUPERB

A.M. Amthor¹, A. Drouart², S. Manikonda³, J. Nolen³, H. Savajols⁴, D. Seweryniak³ ¹Bucknell University, ²CEA-DSM/Irfu/SPhN, ³Argonne National Laboratory, ⁴GANIL

SUPERB - 1st order calculations

⁵⁸Ni+⁴⁶Ti reaction

X-Y distribution at the focal plane for 5 charge states/3 masses

Easier than S³ because of small beam spot (~1 mm dia)

Y-Z plane

Conclusions

- FMA is almost ready to accept high-intensity beams from ATLAS
- AGFA will complement FMA for experiments with heavy nuclei
- SUPERB combines advantages of FMA and AGFA for experiments with reaccelerated radioactive beams

25

Thank you for your attention!