Status and plans for recoil separators for experiments with intense stable beams from ATLAS

Darek Seweryniak
Argonne National Laboratory
EMIS 2012, December 2-7, 2012

Outline

- ATLAS
- Argonne Fragment Mass Analyzer
- ATLAS upgrade
- FMA upgrades
- Beam dump
- New entrance quads
- MCP
- 160X160 DSSD
- Digital DAQ
- Argonne Gas-Filled separator
- SUPERB

Argonne Tandem Linac Accelerator System

 ATLAS

Beams from protons to Uranium with energies $10 \mathrm{MeV} /$ nucleon+

See talk by Richard Pardo on Friday about radioactive beams

Argonne Fragment Mass Analyzer

C. N. Davids et al., Nucl. Instr. Meth., B 70, 358 (1992).

Argonne Fragment Mass Analyzer

Mass resolution:
$\delta \mathrm{M} / \mathrm{M} \sim 1 / 350$
Angular acceptance:
$\Delta \Omega=8 \mathrm{msr}(2 \mathrm{msr})$
Energy acceptance:
$\Delta \varepsilon / \xi=+/-20 \%$
M/Q acceptance:
$\Delta(\mathrm{M} / \mathrm{Q}) /(\mathrm{M} / \mathrm{Q})=10 \%$
Flight path 8.2 m
$\operatorname{Max}(\mathrm{B} \rho)=1.1 \mathrm{Tm}$
$\operatorname{Max}(E \rho)=20 \mathrm{MV}$
Can be rotated off 0 degrees
Can be moved along the axis
Different focusing modes

GAMMASPHERE+FMA

Important component of the

 experimental program at ATLAS since its commissioning in 1992 (~ 200 papers)- Proton drip-line
- Proton emitters
- new α emitters
- In-beam γ rays
- ${ }^{101} \mathrm{Sn}$
- Transfermium nuclei: No, Lr, Rf
- Transfer on ${ }^{56} \mathrm{Ni}$ and ${ }^{44} \mathrm{Ti}$

Fusion-evaporation, deep-inelastic, transfer reactions

Preparation for high intensity ATLAS beams

- Undergoing ATLAS efficiency and intensity upgrade to be completed in 2013 will provide ${ }^{\sim} 10 x$ more intense beams (see talk by R. Pardo)
- New positive ion injector
- New cryo module to replace some split-ring resonators
- FMA experiments (with heavy nuclei)
- Current ${ }^{\sim} 10 \mathrm{~s}$ pnAs ($\sim 100 \mathrm{~s} p \mathrm{pA}$), implantation rates ${ }^{\sim}$ several kHz
- Future ~100 pnAs (~1000s pnA), implantation rates ~several 10s kHz
- Experimental upgrades
- FMA upgrades
- Focal plane detector upgrades
- Argonne Gas-Filled Separator (design)

New beam dump

- First electric dipole limited the beam intensity for certain reactions
- Segmented anode was installed in 2002
- However, beam used to strike the inside of the anode and the tank near the exit relatively close to the anode
- Now the beam leaves the tank through a slit and is stopped in a suppressed Faraday cup outside of the tank

New ED1 tank

Faraday Cup

- Slit in the tank wall
- Beam dumped on a Ta plate
- Entrance slit kept at positive potential with respect to the Ta plate to suppress electrons knocked out of the plate

New entrance quads

- $1^{\text {st }}$ quad shorter with larger tip field
- similar concept was used in EMMA
- Increases the solid angle from 8 msr to 12 msr at 30 cm between target and FMA
- Only small gain at 90 cm

Courtesy of B. Davids

FMA at 293 mm

OLD:

$\Theta_{y}=0.038 \mathrm{rad}$
$\Theta_{y, \max }=0.0401 \mathrm{rad}$

$\mathrm{Q}_{\mathrm{x}}=0.046 \mathrm{rad} \quad \Omega=7.4 \mathrm{msr}$
$\Theta_{x, \max }=0.0591 \mathrm{rad}$
$\mathrm{Q}_{\mathrm{x}}=0.059 \mathrm{rad}$
$\Omega=11.8 \mathrm{msr}$
NEW:
$\Theta_{y}=0.060 \mathrm{rad}$
$\Theta_{y, \text { max }}=0.0634 \mathrm{rad}$

Large-area high-resolution micro-channel plate focal plane detector

- Large area to cover the whole focal plane ($4 \times 12 \mathrm{~cm}^{2}$)
- Position resolution $<1 \mathrm{~mm}$
- High rate capabilty (100 kHz)
- Three micro channel plates for large multiplication/efficiency

Photonis Inc., USA

Permanent magnets to limit diffusion of electrons to achieve better position resolution
D.Shapira etal., Nucl. Instr. and Meth. in Phys. Res. A 454 (2000) 409

High-granularity implantation-decay DSSD

160×160 strips
$64 \mathrm{~mm} \times 64 \mathrm{~mm}$
100, 140, $1000 \mu \mathrm{~m}$ thick

X-array

- 5 clover detectors in a box geometry
- 64x64 mm, 160x160 DSSD
- Mobile frame

FMA Digital DAQ (based on GRETINA)

- Trigerless
- DSSD (320 chans)
- X-array (20 chans)
- focal plane (20 chans)
- Resolution comparable to analog (Ge/Si)
- Pulse shape analysis
- $100 \mathrm{kHz} /$ DSSD possible

100 MHz , 14-bit Digitizer
M. Cromaz et al., A 597 (2008) 233-237

Trigger and Time control module
J.T. Anderson et al., 2007, IEEE Nuclear Science Symposium Conference Record, p. 1751

Argonne Gas-Filled Separator - AGFA

${ }^{1}$ B.B. Back, ${ }^{1}$ R.V.F. Janssens, ${ }^{1}$ W.F. Henning, ${ }^{1}$ T.L. Khoo, ${ }^{1}$ J.A. Nolen, ${ }^{1}$ D.H. Potterveld, ${ }^{1}$ G. Savard, ${ }^{1}$ D. Seweryniak, ${ }^{3}$ M. Paul, ${ }^{2}$ P. Chowdhury, ${ }^{4}$ W.B. Walters, ${ }^{5}$ P.J. Woods, ${ }^{6}$ K. Gregorich
${ }^{1}$ Argonne National Laboratory, Argonne, ${ }^{2}$ University of Massachusetts Lowell, ${ }^{3}$ Hebrew University,
${ }^{4}$ University of Maryland, ${ }^{5}$ University of Edinburgh, ${ }^{6}$ Lawrence Berkeley National Laboratory

- Use combined-function magnets
- Overlapping bending, focusing fields
- Fewer magnets, ultra compact design
- Innovative QvDm design
- Design parameters
- 33° bend
- 2.5 Tm
- 4.0 m total length (3.7 m at 40 cm)
- 80 cm target-separator (Gammasphere) 22.5 msr
- 40 cm target-separator (stand-alone) 42 masr
- Compact focal plane($\sim 5 \mathrm{~cm} \times 5 \mathrm{~cm}$)

AGFA optics and parameters

Quad length	48 cm
Quad bore	22 cm
Quad peak pole-tip field	$1.24 \mathrm{~T}(2.5 \mathrm{Tm}, 40 \mathrm{~cm}$ tgt $)$
Quad-dipole separation	75 cm
Dipole center gap	11 cm
Dipole bend angle	33 deg
Dipole bend radius	2.0 m
Dipole edge angle	-36 deg
Dipole peak field	$1.7 \mathrm{~T} \mathrm{(2.5} \mathrm{Tm)}$
Peak X excursion	$\pm 30 \mathrm{~cm}$
Dipole-F.P. separation	$92 \mathrm{~cm} \mathrm{(40} \mathrm{~cm} \mathrm{to} \mathrm{tgt)}$, $83 \mathrm{~cm}(80 \mathrm{~cm}$ to tgt)
Beam profile at target	$\Delta \mathrm{X}=5.0 \mathrm{~mm}$ FWHM $\Delta \mathrm{Y}=2.0 \mathrm{~mm}$ FWHM

AGFA - 3D magnet design

${ }^{254}$ No test case

$$
\begin{aligned}
& { }^{48} \mathrm{Ca}+{ }^{208} \mathrm{~Pb} \rightarrow{ }^{254} \mathrm{No}+2 \mathrm{n} \\
& \mathrm{E}_{\text {beam }}=220 \mathrm{MeV}
\end{aligned}
$$

- 1 Torr He, 5×2 mm beam spot
- ${ }^{254}$ No angular distr: Gaussian, $\sigma=51$ mrad
${ }^{-48}$ Ca stripped, (C foil) $q_{\text {bar }}=17.1$
- 89% of ${ }^{254}$ No transported to focal plane
- 71\% fall within a $64 \times 64 \mathrm{~mm}^{2}$ DSSD
- Solid angle to DSSD is 22 msr
- Beam is well separated

Focal plane distribution

Separator for Unique Products of Experiments with Radioactive Beams - SUPERB

A.M. Amthor ${ }^{1}$, A. Drouart², S. Manikonda³, J. Nolen ${ }^{3}$, H. Savajols ${ }^{4}$, D. Seweryniak ${ }^{3}$ ${ }^{1}$ Bucknell University, ${ }^{2}$ CEA-DSM/Irfu/SPhN, ${ }^{3}$ Argonne National Laboratory, ${ }^{4}$ GANIL

- A charge state acceptance : $\pm 10 \%$
- A Bp acceptance for each charge state: $\pm 10 \%$
- A large angular acceptance in both planes: $+/-50 \mathrm{mrad}$
- A magnetic rigidity Bpmax $=1.5 \mathrm{Tm}$
- An electric rigidity Epmax $=10 \mathrm{MV}$ (2 $2^{\text {nd }}$ set of electrodes for higher electric rigidity required for inverse kinematics)
- A mass resolution of $1 / 300$ (FWHM)
- A primary beam suppression not critical

Based on the design of the mass separator section of S^{3} optimized for experiments with reaccelerated radioactive beams at Rea12

FP

SUPERB - $1^{\text {st }}$ order calculations

Conclusions

- FMA is almost ready to accept high-intensity beams from ATLAS
- AGFA will complement FMA for experiments with heavy nuclei
- SUPERB combines advantages of FMA and AGFA for experiments with reaccelerated radioactive beams

Thank you
 for your attention!

