

Spin-aligned RI beams via two-step fragmentation reactions

Yuichi Ichikawa

Department of Physics, Tokyo Institute of Technology Polarized RI Beam Team, RIKEN Nishina Center

Nature Phys. 8 (2012) 918-922.

ARTICLES PUBLISHED ONLINE: 21 OCTOBER 2012 | DOI: 10.1038/NPHYS2457

Production of spin-controlled rare isotope beams

Yuichi Ichikawa^{1*†}, Hideki Ueno¹, Yuji Ishii², Takeshi Furukawa³, Akihiro Yoshimi⁴, Daisuke Kameda¹, Hiroshi Watanabe¹, Nori Aoi¹, Koichiro Asahi², Dimiter L. Balabanski⁵, Raphaël Chevrier⁶, Jean-Michel Daugas⁶, Naoki Fukuda¹, Georgi Georgiev⁷, Hironori Hayashi², Hiroaki Iijima², Naoto Inabe¹, Takeshi Inoue², Masayasu Ishihara¹, Toshiyuki Kubo¹, Tsubasa Nanao², Tetsuya Ohnishi¹, Kunifumi Suzuki², Masato Tsuchiya², Hiroyuki Takeda¹ and Mustafa M. Rajabali⁸

The degree of freedom of spin in quantum systems serves as an unparalleled laboratory where intriguing quantum physical properties can be observed, and the ability to control spin is a powerful tool in physics research. We propose a method for controlling spin in a system of rare isotopes which takes advantage of the mechanism of the projectile fragmentation reaction combined with the momentum-dispersion matching technique. The present method was verified in an experiment at the RIKEN RI Beam Factory, in which a degree of alignment of 8% was achieved for the spin of a rare isotope ³²Al. The figure of merit for the present method was found to be greater than that of the conventional method by a factor of more than 50.

> Section. 1

Contents

Principle for producing spin-aligned RI beam

- Two-step fragmentation
- Dispersion matching technique

> Section. 2

Experiment at RIKEN RIBF using ^{32m}Al

- Setup
- Results

> Section. 3

Evaluation of new method

- Comparison with conventional method
- Figure of merit

What is spin alignment?

Spin Orientation

Production of spin-aligned RI beam

- Primary beam :
 - rare gas + some metals
- Large number of nucleon-removal

Small spin orientation

Previous accessible nuclei

Global way to produce spin-aligned RI beams

Maximize the magnitude of spin alignment

The simplest & promising way

One-nucleon removal reaction

(Simple) Two-step fragmentation

High spin alignment

by one-nucleon removal

- No projectile dependence
- Low yields due to

double momentum selections

Production of alignment is related to the momentum change in 2nd reaction

Direct extraction of "relative" momentum change

Combination with dispersion-matching technique

Separate roles of focal planes

Enhancement of yield with keeping spin-alignment

Isomeric state of ³²AI

Experimental condition

Particle identification

Confirmation of dispersion matching

TDPAD method

Time Differential Perturbed Angular Distribution (TDPAD) method

- Spin-aligned beam
- Larmor precession •

ħ

g

$$\omega_L = -\frac{g\,\mu_N B_0}{\hbar}$$

- B_0 : Magnetic field μ N
 - : Nuclear magneton
 - : Dirac constant
 - : g-factor
- γ counting rate for each Ge

$$W(\theta + \omega_L \cdot t)$$

Experimental setup

Beam Stopper

- · Annealed Cu
- 3mm thickness

Magnet

- $B_0=2.59$ kGauss
- 0.1% uncervainty

Ge detector

- Relative Efficiency 35%×1,15-20%×3
- Distance
 7cm from center

Plastic scintillator

- 0.1mm thickness
- Start timing for PAD

Energy spectrum

Time spectrum & R (t) ratio

Evaluation of new method

Validity of dispersion matching

Two-step fragmentation – w/o Dispersion matching

F7 slit : center±0.15%

Validity of dispersion matching

Comparison with conventional method

Figure of merit

	Two-step	One-step
Reaction	$^{48}Ca \rightarrow {}^{33}AI \rightarrow {}^{32}AI$	⁴⁸ Ca → ³² Al
Energy	200 MeV/u	345 MeV/u
Target	10mm Be	4mm Be
Goldhaber Width	0.4%	4%
Mom. Acceptance	±0.15%	±0.5%
^{32m} Al Yield@F12	0.54(5) kcps	0.87(6) kcps (Att.1/100)
³² AI Yield@F12	2.3(2) kcps	8.6(3) kcps (Att.1/100)
Isomer Ratio	50(6)%	59(5)%
Alignment	8(1)%	<0.8% (2o confidence)
Meas. Duration	11.9 h	9.3 h

Figure of merit(Y • A²) is better by 50 times or more

Broadening of accessible nuclei

> New method to produce high spin alignment

- ✓Two-step frag. by one-nucleon removal
- ✓ Dispersion matching technique

Experiment using ^{32m}Al

- ✓ BigRIPS at RIKEN RIBF
- \checkmark 8(1)% spin alignment

Evaluation of new method

- ✓ Figure of merit was improved by >50 times
- ✓2-dimensional broadening of accessible nuclei

RIKEN Nishina Center

Y. Ichikawa, H. Ueno, D. Kameda, H. Watanabe, N. Aoi,

N. Fukuda, N. Inabe, T. Kubo, M. Ishihara, Ohnishi, H. Takeda

Tokyo Institute of Technology

Y. Ishii, K. Asahi, T. Inoue, H. Hayashi, H. Iijima, T. Nanao,

K. Suzuki, M. Tsuchiya

Tokyo Metropolitan University

T. Furukawa

Okayama University

A. Yoshimi

Institute for Nuclear Research and Nuclear Energy (INRNE), Bulgaria

D. L. Balabanski

CEA, France

J. M. Daugas, R. Chevrier

CSNSM, IPN Orsay, France

G. Georgiev

Katholieke Universiteit Leuven, Belgium

M. M. Rajabali