Lasers in gas cells and jets for the production and spectroscopy of exotic nuclei

Overview

Production of pure radioactive ion beams

Principles of laser ionization

Resonance Ionization Laser Ion Source (RILIS) - gas cell =>LISOL

Laser spectroscopy

New developments

Conclusions

Production of pure radioactive ion beams

Production of pure radioactive ion beams

Principles of laser ionization

The Z selectivity of the RILIS approach

Decay spectroscopy with In Gas Laser Ionization and Spectroscopy (IGLIS) technique

LISOL Laser Ion Source

erc

8/36

KU LEUVEN

Front end of the LISOL mass separator

Two-step laser ionization schemes used

1							Tu	nable	e rang	je								2
Н		225 - 800 nm																He
3 Li	4 Be	used on-line											5	6 C	N	⁷ 0	3 S F	10 Ne
11 Na	12 Mg		used off-line											14 Si	1 P	5 1 S	5 17 CI	7 18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	Ga	31 I	32 Ge	3 As	3 3. Se	4 36 Br	536 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	In	49	50 Sn	5 Sb	1 5: Te	2 53 	3 54 Xe
55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	ΤI	81	82 Pb	8 Bi	3 8 Po	4 86 At	5 86 Rn
87 Fr	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110	111	112							

58	(59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	r Nd Pm Sm		Sm	Eu Gd		Tb Dy		Но	Er	Tm	Yb	Lu	
90	9	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa		U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

80% of all elements can in principle be ionized by the LISOL laser system

Bri)

erc

Mark Huyse– IKS, KU Leuven 2-7/12/2012 EMIS2012 Matsue

KU LEUVEN

LISOL Radioactive Ion Beams since 1994

erc

11/36

KU LEUVEN

The quest for pure Radioactive Ion Beams

The quest for pure Radioactive Ion Beams

a

700

600E

500 400

300

200

100

b

Counts/1 keV 2 F

00

2.5

1.5

0.5

1.5

5

0.5

Counts/1 keV

100

Dual Chamber gas cell

screen the laser ionization region from the stopping region

collect the surviving ions before they c enter the laser ionization region

Yu. Kudryavtsev et al., NIMB267 (2009) 2908

Production of neutron-rich A=70 isotopes by fission

ISOLDE 1 GeV p on ²³⁸U

LISOL 30 MeV p on ²³⁸U

S. Franchoo et al., PRL 81 (1998) 03100
L. Weissman et al., PRC59 (1999) 2004
W. Mueller et al., PRL83 (1999) 3613
W. Mueller et al., PRC61, (2000) 054308
S. Franchoo et al., PRC 64 (2001) 054308
J. C. Thomas et al., PRC 74 (2006) 054309
D. Pauwels et al., PRC 78 (2008) 041307(R
D. Pauwels et al., PRC79 (2009) 044309
I. Stefanescu et al., PRC79 (2009) 044325

Mark Huyse– IKS, KU Leuven 2-7/12/2012

Laser spectroscopy for nuclear physics

Mark Huyse– IKS, KU Leuven 2-7/12/2012 EMIS2012 Matsue

15/36

Progress in laser spectroscopy at radioactive ion beam facilities

B Cheal and K T Flanagan

Schuster Building, The University of Manchester, Manchester M13 9PL, UK

Mark Huyse- IKS, KU Leuven 2-7/12/2012 EMIS2012 Matsue

N=40

N=28

N=20

N=50

Z=20

erc Bria

16/36

doi:10.1088/0954-3899/37/11/113101

Hot-cavity isomer- and laser spectroscopy at ISOLDE

KU LEUVEN

In-gas-cell laser spectroscopy: 57,59Cu

Results

The tin region

									Sb 121.760	Sb 103 >1.5 μs	Sb 104 0.44 s	Sb 105 1.12 s	Sb 106 1.1 s	Sb 107 4.6 s	Sb 108 7.6 s	Sb 109 16.7 s	Sb 110 24.0 s	Sb 111 75 s
								51	σ 5.2	p? β+?	β+	β ⁺ βp ?	β ⁺ γ 1207; 811	β ⁺ γ 1280; 819; 151; 704	β ⁺ γ 1206; 905; 1599; 1273	β^+ 4.4; 5.4 γ 925; 1062; 665; 1496	β ⁺ 6.9 γ 1212; 985; 1243; 827	β ⁺ 3.3 γ 154; 489; 1033
							Sn 118.710	Sn 100 0.94 s	Sn 101 3 s	Sn 102 3.8 s	Sn 103 7.0 s	Sn 104 20.8 s	Sn 105 34 s	Sn 106 2.1 m	Sn 107 2.9 m	Sn 108 10.3 m	Sn 109 18.0 m	Sn 110 4.11 h
						50	σ 0.61	β ⁺ 3.4 γ	β ⁺ βp 2-3.5	β ⁺ 3.2; 3.5 γ 320; 94; 69; 1063	β ⁺ γ 1356; 314; 1397; 1078 βρ; g; m	β ⁺ 2.4 γ 133; 913; 401; 1407 m; g	β ⁺ γ 1282; 1466; 309; g; m βp 1–3	ε β ⁺ 1.2 γ 387; 253; 477; m	β ⁺ γ 1129; 1542; 1001 m; g	 ϵ; β⁺ 0.4 γ 396; 273; 169; 669 m 	ε; β ⁺ 1.6 γ 1099; 1321; 331 g; m	ε γ 283 m
						In 114.818	In 98 1.7 s 45 ms	In 99 3.1 s	In 100 5.9 s	In 101 16 s	In 102 22.1 s	In 103 34 s 60 s	In 104 15.7 s 1.8 m	In 105 43 s 4.8 m	In 106	In 107 50.4 s 32.4 m	In 108 39.6 m 58.0 m	In 109 1.34 m 4.2 h
					49	σ 197	β ⁺ β ⁺ βp? βp?	β+ βp ?	β ⁺ γ 1004; 795; 297 βp 2-4	β ⁺ γ 252; 750; 421; 891	β ⁺ 3.5 γ 777; 861; 593 βρ 1.5-3	$\begin{array}{c} \beta^{+} \\ \gamma & 188; \\ \beta^{+} & 720; \\ \gamma & 632 & 740 \end{array}$	$\begin{array}{c} \beta^+ \ 4.3\\ \gamma \ 658;\\ e^{ 7} \qquad 834;\\ 8^+ \qquad 878\end{array}$	β ⁺ 3.9 y 131; 260; ly 674 604	β ⁺ 4.8 2.6 γ 633; γ 633; 1716; 861; 861 998	β ⁺ 2.3 γ 205; 505; 1γ 679 321	$\begin{array}{c} & & & & \\ & & & & \\ \beta^+ 3.5 & \gamma 633; \\ \gamma 633; & & 876; \\ 1987 & 243 \end{array}$	ε β ⁺ 0.8 γ 204; Ιγ 650 624
						Cd 112.411	Cd 97 2.8 s	Cd 98 9.2 s	Cd 99 16 s	Cd 100 49.1 s	Cd 101 1.2 m	Cd 102 5.5 m	Cd 103 7.3 m	Cd 104 57.7 m	Cd 105 55.5 m	Cd 106 1.25	Cd 107 6.5 h	Cd 108 0.89
					48	σ _{abs} 2520	β ⁺ βp 1.5 – 5.0	β ⁺ γ 347; 1176; 107; 61	β ⁺ γ 343; 672; 1583 βp; g; m	β ⁺ γ 937; 140; 583 m	β ⁺ γ 98; 1723; 1259; 925 g; m	€; β ⁺ γ 481; 1037; 505; 415 m	ε; β ⁺ 3.2 γ 1462; 1449; 1080; 387 g; m	ε β ⁺ γ 84; 709 m	 ϵ; β⁺ 1.7 γ 962; 1302; 347; 607; 1693 m; g 	σ 0.20	ε β+ γ (829) m	σ1.0
			Ag 107.8682	Ag 93 >1.5 μs	Ag 94 0.39 s 0.61 s ~30 ms	Ag 95 1.74 s	Ag 96 4.40 \$ 6.9 s	Ag 97 25.3 s	Ag 98 46.7 s	Ag 99 10.5 s 2.1 m	Ag 100 2.3 m 2.0 m	Ag 101 3.1 s 11.1 m	Ag 102	Ag 103	Ag 104 33.5 m 69.2 m	Ag 105 7.2 m 41.29 d	Ag 106 8.3 d 24 m	Ag 107 44.3 s 51.839
		47	σ 62	p ? 8 ⁺ ?	8 [*] ,γ 814; β ⁺ 9(5;β0; γ 814; p 1.01; 905; 0.79; 659 2p 1.8 βp β ⁺	β ⁺ βp 1.5-4.5 γ 1261; 1685; 2025	β ⁺ γ 1415; 684; β ⁺ 325 γ 1415 βρ βρ	β ⁺ γ 686; 1295; 1256	β ⁺ γ 863; 679; 571	β ⁺ 4.2 γ 264; 832; 164 806	β ⁺ 5.4 γ 666; γ 666; 751; 751; 1694 773	β ⁷ 2.7; 3.4 γ 261; 1γ 98; 588; 667; 176 1174	β ⁺ 4.0 γ 557; iγ 9 719; γ 557; 836; 1835	6 β ⁺ 1.7 γ 119; lγ 134 148; 267; e ⁻ 1274	β ⁺ 2.7 γ 556 γ 556 γ 256 γ 942	$ \begin{array}{cccc} I_{\gamma} \left(25 \right) & \epsilon \\ e^- & \gamma & 345; \\ \epsilon & 280; \\ \gamma & (319) & 443 \end{array} $	no β ⁺ γ 512; 1046; β ⁺ 2.0 717; 451 γ 512	lγ 93 e rr 1 + 35
		Pd 106.42	Pd 91 >1.5 μs	Pd 92 1.1 s	Pd 93 1.07 s	Pd 94 9.0 s	Pd 95	Pd 96 2.0 m	Pd 97 3.1 m	Pd 98 17.7 m	Pd 99 21.4 m	Pd 100 3.7 d	Pd 101 8.47 h	Pd 102 1.02	Pd 103 16.96 d	Pd 104 11.14	Pd 105 22.33	Pd 106 27.33
	46	σ7	8+2	β ⁺ 80.2	β ⁺ γ 240; 382; 622; 866* βρ	β ⁺ γ 558; 724; 55; 798	β ⁺ γ 1351; 717; 382 βp 1.3- 3.7; q	ε; β ⁺ 1.5 γ 125; 762; 500; 1099 m	β ⁺ 3.5 γ 265; 475; 793	ε; β ⁺ 0.7 γ 112; 663; 107	β ⁺ 2.2 γ 136; 264; 673 m	ε no β ⁺ γ 84; 75; 126	ε β ⁺ 0.8 γ 296; 590; 270; m	σ3.2	ε γ(357) m		σ 22 σ _{n, α} 0.0000005	σ0.013 + 0.28
	Rh 102.90550	Rh 89 >1.5 μs	Rh 90	Rh 91	Rh 92	Rh 93 11.9 s	Rh 94	Rh 95	Rh 96	Rh 97 44 m 31 m	Rh 98 3.5 m 8.7 m	Rh 99 4.7 h 16 d	Rh 100 4.7 m 20.8 h	Rh 101 4.4 d 3.3 a	Rh 102 2.9 a 207 d	Rh 103	Rh 104 4.4 m 42 s	Rh 105 45 s 35.4 h
	or 145	p? 8+2	β ⁺ β ⁺ 80.7 80.7	β ⁺ γ 973;	β ⁺ γ 866; 991; 818	β ⁺ 7.1 γ 1359; 1630; 1393; 2274	β* 6.4; β* 7.5 v 1431; γ 1431; 756; 756; 312; 1073;80 146	lγ 543 β ⁺ 3.2 β ⁺ γ 942; γ 784 1352	hγ (52); e ⁻ β ⁺ 4,7 γ 833; γ 833; 1099; 685; 1692 632	ε β ⁺ 2.6 γ 189; 422 840; 1y 259 879	$β^+$ $γ 652; β^+ 3.5$ 745 γ 652	$ \begin{array}{c} \varepsilon & \varepsilon \\ \beta^+ 0.7 & \beta^+ 0.7; \\ \gamma 341; & 1.1 \\ 618; & \gamma 528; \\ 1261 & 353; 90 \end{array} $	Iγ 32; 74 ε β ⁺ γ 540; γ (540; 2376; 687) 1553	ε ε γ 307; γ 127; 545 198; 1γ 157 325	$ \begin{array}{c} \varepsilon & \varepsilon \\ \gamma \ 475; & \beta^{+} \ 1.3 \\ 631; & \beta^{-} \ 1.2 \\ 697 & \gamma \ 475; \\ I\gamma \ (42); \ e^{-} & 628 \end{array} $	iγ (40) σ 11 + e 134	φ φ 2.5 φ ⁻ ϵ γ φ ⁻ τ γ 556; γ (556) 1237 σ 40	γ 319; 306 e ⁻ 11000
	Ru 87 >1.5 μs	Ru 88 1.3 s	Ru 89 1.38 s	Ru 90 11.7 s	Ru 91 7.6 s 7.85 s	Ru 92 3.65 m	Ru 93	Ru 94 51.8 m	Ru 95 1.65 h	Ru 96 5.54	Ru 97 2.9 d	Ru 98 1.87	Ru 99 12.76	Ru 100 12.60	Ru 101 17.06	Ru 102 31.55	Ru 103 39.35 d	Ru 104 18.62
	8+ ?	β ⁺ Bp ?	β ⁺ βρ ?	β ⁺ > 155 : 493	β ⁺ γ 394; βp 1097; m 905	β ⁺ γ 214; 259; 135	β ⁺ y 1396; β ⁺ 5.3 1111; m y 681; ly 734 80.2.48 0	ε γ 367; 891	ε; β ⁺ 1.2 γ 336; 1097; 627	σ 0.23	ε γ216; 324	σ<8	σ4	φ 5.8	σ5	σ 1.2	β ⁻ 0.2; 0.7 γ 497; 610 m σ <20	σ 0.49

http://www.uni-mainz.de/FB/Chemie/AK-Noertershaeuser/en/experiments/laserspectroscopy/survey.html

Laser spectroscopy of ⁹⁷⁻¹⁰¹Ag

Production
 ⁹²Mo(¹⁴N - 130 MeV,2pxn)^{104-x}Ag

^{64,nat}Zn(³⁶Ar – 125 MeV,pxn)^{101–97}Ag Laser ionization efficiency ~ 2%

In-gas cell laser spectroscopy
520 mbar argon
Total width: 9-10 GHz

• Detection Beta- and gamma detection

New developments

• **new laser schemes :** problem of lack of stable isotopes for certain elements *(synergy with hot-cavity RILIS)*

• better efficiency:

- more efficient laser schemes
- higher spatial and temporal overlap (in-jet; high-repetition rate)
- reduce diffusion losses in gas cell
- reduce delay time in gas cell
- limit possible recombination of photo-ions (pre-separation)

• better selectivity

- separate stopping and ionization region (in-jet)
- reduce radioactivity (pre-separation)

better resolution

- optimize laser bandwidth
- reduce Doppler broadening (lower temperatures, cryogenic cell <-> in-jet)
- reduce pressure broadening (in-jet)

New developments: more elements

J. Roβnagel et al., PRA85 (2012) 012525

²²⁷Ac

LARISSA[3]

250

200

150 100

n (continuum)

- 115 MeV ¹⁶O on 3.3 mg/cm² ⁹²Mo => ^{104, 103}In

- limited laser efficiency => further off-line tests for other transitions

Sn (Rydberg state)

- 100 MeV ¹⁶O on 3.3 mg/cm² ⁹²Mo => ^{105, 106}Sn
- laser efficiency = 0.4 % => strong pressure broadening

AC (continuum)

- off-line tests in Mainz (22 year ²²⁷Ac)
- 145 MeV ²⁰Ne on 0.19 mg/cm² ¹⁹⁷Au => 212,213 Ac $\frac{197}{212}$ laser efficiency = 0.8 % => room for improvement

New developments: test of laser schemes at RIKEN

courtesy of Tetsu Sonoda

New developments: higher efficiencies

Repetition rate: from 200 Hz (Dye lasers) to 10 kHz (Ti:Sa) K.U.Leuven - Mainz – GANIL - Orsay - JYFL - RIKEN - JINR Dubna

New developments: better resolution

KU LEUVEN

Comparison hot cavity / gas cell / LIST

The effect of pressure and temperature on the FWHM

starting from a laser resolution of 1.8 GHz

KU LEUVEN

27/36

BriX

erc

The ultimate approach for exotic nuclei with energies ~ 5 MeV/u?

Developments for S3 at SPIRAL2

Developments at Jyvaskyla: IGISOL courtesy of lain Moore

- Time overlap (high repetition rates)
- Spatial overlap (nozzle design)

100

80

70

Longitudinal distance from ion guide (mm)

60

40

30

10

KU LEUVEN

20 mm

30/36

Huyse– IKS, KU Leuven 2-7/12/2012 EMIS2012 Matsue

 $\lambda_1, \lambda_2, \lambda_{3^{140}}$

Developments at RIKEN: SLOWRI/PALIS courtesy of Tetsu Sonoda

Actual construction will be started soon.!!

KU LEUVEN

Developments at KEK: KISS courtesy of Hiroari Miyatake

Development at Dubna: GALS Courtesy of Sergey Zemlyanoy

KU LEUVEN

erc

Mark Huyse- IKS, KU Leuven 2-7/12/2012 EMIS2012 Matsue

KU LEUVEN

Dedicated workshops

"Gas-Cell-Based Laser Ionization Spectroscopy Developments"

Leuven, May 30 – June 1, 2012

Mark Huyse– IKS, KU Leuven 2-7/12/2012 EMIS2012 Matsue

35/36

Dedicated workshops

Workshop on Low-Energy Radioactive Isotope Beam (RIB) Production by In-Gas Laser Ionization for Decay Spectroscopy at RIKEN December 10-11, 2012, RIKEN-Wako

This workshop will be held after the EMIS12 conference on the low-energy RIB production by in-gas laser ionization for decay spectroscopy. This workshop is primarily motivated as an international collaboration meeting between Japan (KEK, RIKEN) and Belgium (KU Leuven) on the development of the IGLIS (In-Gas Laser Ionization and Spectroscopy) method for the study of r-process nuclei. However, we are going to use this opportunity to discuss other physics cases and to define the technical issues to be addressed, by calling for special attention of the EMIS2012 participants interested in the subject.

Тор

- Program (tentative)
- Workshop venue
- Accommodation

Organizers

erc

- Sunchan Jeong (KEK)
- Piet Van Duppen (KU Leuven)
- Mark Huyse (KU Leuven)
- Michiharu Wada (RIKEN)
- Hiroari Miyatake (KEK)

KU LEUVEN

Dedicated workshop

Dedicated workshop

