The NSCL Cyclotron Gas Stopper Under Construction

- Why gas stopping at NSCL
- Linear cells and their limitations
- Cyclotron stopper
 - Simulations
 - Design
 - Construction
- Status

G. Bollen, M. Brodeur,
M. Gehring, N.S. Joshi,
C. Magsig,
D. J. Morrissey, R. Ringle,
S. Chouhan, J. DeKamp,
J. Ottarson, SCS,
A. Zeller

and many, many more!

National Science Foundation Michigan State University

MICHIGAN STATE

S. Schwarz, EMIS 12/2012

NSCL: User facility, RIB production by projectile fragmentation and fission, fast beams

From fast to not-so-fast

Complementary stopper options: Linear gas stopper - Low-pressure with RF carpets - Collaboration with ANL (FRIB R&D) ReA, ← `Stopped' Beam area • Future: **Cyclotron stopper** Funded by NSF Momentum compression stage Used for linear gas cell + cyclotron stopper ← CCF, 100 MeV/u Solid stopper **Future option for special** elements and very high beam rates Example: ¹⁵O, I >10¹⁰/s

Michigan State University

 \rightarrow Replaces 0.5m long, 1bar-He cell, used successfully for LEBIT in 2005-2009

\rightarrow Larger size, lower pressure (L ~ 1 m, p ~ 100 mbar)

- \rightarrow Better adapted to large horizontal beam emittance
- \rightarrow Lower p allows effective RF ion guiding, **RF carpet + funnel**
- \rightarrow Promises reduced space charge effects, increased rate capability, to be characterized

$\rightarrow\,$ Commissioning with ^{76}Ga beam in progress

 \rightarrow ⁷⁶Ga, ⁷⁶Ga(H₂O), ⁷⁶Ga(H₂O)₂ observed

... So, let's help them

(TRIM simulation)

Cyclotron stopper – the idea

Origins:

- Decelerate antiprotons: J. Eades and L. M. Simons, NIM A 278 (1989) 368
- Proposal to stop lighter ions: I. Katayama et al., HI 115 (1998) 165

1 Confine:

- Magnetic field, <2.7 T
 - `wind up' trajectory in central chamber
 → confinement in radial direction
 - Cyclotron-type sector field:
 → axial focusing

2 Thermalize:

- Low-pressure gas in cryogenic chamber ions lose energy, spiral towards center

3 Extract:

- Use HF/RF ion guiding techniques

to move thermalized ions to center and out within a few 10 ms

Path length for ions into 100mbar of He ($B\rho$ =1.6 Tm)

The magnet

Warm iron superconducting cyclotron dipole

2 superconducting coils, iron dominated Magnetic field (max) 2.7 T Six sectors, 3hills / 3valleys, k = -0.28 3.8 m Diameter Injection radius 0.95 m Axial gap 180 mm 2.6 Tm \rightarrow 1.6 Tm Beam rigidity Cooling: 2 * 3 1.5W pulse-tube cryo-coolers 165 tons Weight **60kV** operation One half moveable

for access to cryogenic stopping chamber

Stopping calculations

Used:

- + magnetic field (TOSCA 3d)
- + relativistic ion motion
- + Energy loss by collisions with buffer gas: SRIM, stopping and range tables
- + improved charge exchange: hi-energy: ETACHA,
 - lo-energy: combination of formula
 - interpolate between extremes
- + Small-angle-scattering (Amsel's framework)
- + energy loss at degrader: ATIMA

Cases: ⁹Li, ^{14,24}O, ^{17,31}F, ^{24,40}Si, ^{56,70}Fe, ^{70,79}Br, ¹²⁷I

Stopped ion distribution separated from ionization density → Reduced effect from space charge

National Science Foundation

Michigan State University

Calculated acceptance

Acceptance of device, calculated from large 4d-input distribution

	lon	Radial	Axial	
		Acceptance	Acceptance	
(N. Joshi)		CycStop	CycStop	
	79Br	897	1190	
	56Fe	740	1165	
	40Si	853	1187	
	240	707	1179	

→ High acceptance (~**700-1000** π mm rad)

Calculated stopping efficiency

National Science Foundation

707

1550

240

1179

1038

64.9%

Ion transport to center:

- Large **RF ion carpet**, ~1m diameter
- Likely 6-fold segmented (C, size limitations)
- 'Surfing' technique

→ Efficient extraction within ~30ms or less

Surfing carpet in test stand

Ion extraction through hole

- RFQ ion guide + B-field = bad idea.
 → Resonance condition, loss

National Science Foundation

Predicted performance (simulation) :

Status

Magnet:

- design complete,
- steel: pole done, 1/2 yoke delivered
- cryostat: under construction

Stopped-ion transport:

- stopping chamber under design
- RF carpets, conveyor in testing

Magnet testing: - offline 2013 Move to stopping vault: after that

Future

NSF: PHY-09-58726, PHY-11-02511

National Science Foundation