# Large gamma-ray detector arrays and electromagnetic separators

I-Yang Lee

#### Lawrence Berkeley National Laboratory

16th IUPAP International Conference on Electromagnetic Isotope Separators and Techniques Related to Their Applications (EMIS2012), Matsue JAPAN, 2-7 December 2012.

#### $\gamma$ -ray spectroscopy with separators

- 1) Prompt Spectroscopy
  - Gamma-ray detectors at target position
  - Tag on recoils at focal plane of separator
- 2) Decay Spectroscopy
  - Implant recoil in focal plane detector
  - Identify decays of recoil (proton, alpha, electron)
  - Detector gamma-rays in coincidence with decay

# γ-ray detectors provide

Level energy γ-ray multipolarity Electromagnetic moments Lifetime

#### Separators provide

Mass measurements/separation Z identification Velocity vector

#### γ-ray array development



The resolving power is a measure of the ability to observe faint emissions from rare and exotic nuclear states.

# **Doppler Broadening**



#### **Broadening of detected gamma ray energy due to:**

- Spread in speed  $\Delta V$
- Distribution in the direction of velocity  $\Delta \theta_{\rm N}$
- Detector opening angle  $\Delta \theta_{\rm D}$

# **Constitution of the end of the**

## Doppler broadening example

65 MeV/u, β = 0.36Δθ=1.4° Δβ/β = 0.02



## Gamma-ray detector arrays

| Detector                   | efficiency | Peak/total | Resolution  | Resolution |
|----------------------------|------------|------------|-------------|------------|
|                            |            |            | Slow beams  | fast beams |
| <b>Compton shielded Ge</b> | 5 – 10%    | 0.50       | 2.5-5.0 keV | 10%        |
| Segmented Ge               | 3- 5%      | 0.20       | 2.5 keV     | 1-2%       |
| Scintillation(Nal, Csl)    | 50%        | 0.50       | 100 keV     | 10%        |
| (LaBr₃)                    |            |            | 30 keV      | 3%         |
| Tracking Ge (now)          | 5 –7%      | 0.50       | 2.5 keV     | 1%         |
| (4π)                       | 50%        |            |             |            |



Gammasphere



GRAPE



AGATA Demonstrator

DALI

### Gammasphere at FMA

#### Gammasphere

Compton shieldedmodules110Peak efficiency9% (1.33 MeV)Peak/Total55% (1.33 MeV)Resolving power10,000Optimal coincidence fold4





#### Evolution of the structure of Ni isotopes

<sup>48</sup>Ca + <sup>26</sup>Mg ~ 200% above barrier & Gammasphere + FMA



 $\Delta E - E \& M/Q$  identification





S. Zhu, C. Hoffman, and M. Albers

### **Berkeley Gas-filled Separator**



#### Isomer Spectroscopy Z>100 at BGS focal plane

Measure properties and production mechanisms of the elements above Z~102 to understand the nature and behavior of these nuclei, and to assist theoretical predictions for the stability, structure and production of super-heavy elements (NS8, 2015).







- Studying the decay of isomers at focal plane of BGS.
- Addressing the question of the location and extent of shell-stabilized spherical super-heavy nuclei.
- Determining properties for Z>100 nuclei such as
  - single quasi-particle structure
  - pairing strength
  - deformation
  - excitation modes
- Testing the same models that predict properties of super-heavy nuclei near Z=114, N=184.

EE/15/2022

#### Results on <sup>254</sup>No



## *γ*-ray scintillation detectors

| Material                                | Density<br>(g/ml) | Light output<br>(photon/keV) | Main decay time<br>(nsec) | Peak wavelength<br>(nm) | Resolution<br>@662 keV |
|-----------------------------------------|-------------------|------------------------------|---------------------------|-------------------------|------------------------|
| NaI(Tl)                                 | 3.67              | 38                           | 250                       | 415                     | 6%                     |
| CsI(Tl)                                 | 4.51              | 56                           | 1,000                     | 550                     | 6%                     |
| BaF <sub>2</sub>                        | 4.88              | 10                           | 630                       | 310                     | 8%                     |
|                                         |                   | 2                            | 0.6                       | 220                     |                        |
| LaBr <sub>3</sub> (Ce)                  | 5.08              | 63                           | 16                        | 380                     | 3%                     |
| Cs <sub>2</sub> LiYCl <sub>6</sub> (Ce) | 3.31              | 20                           | 1.4                       | 270                     | 4%                     |
| (CLYC)                                  |                   |                              | 50 450 1,000              | 380                     |                        |

- Examples of  $4\pi$  arrays
  - Nal- Crystal ball, Spin Spectrometer, DALI2
  - Csl CEASAR
  - $BaF_2 DANSE$
  - LaBr<sub>3</sub> SHOGUN

## Efficiency vs. resolution



For given uncertainties, more counts (higher efficiency) are needed with worse resolution and/or peak-to-back ground ratio.

#### The CAESium iodide ARray



D. Weisshaar et al.

- Csl(Na)
- 48 3"x 3"x 3" crystals
- 144 2"x 2"x 4" crystals
- Solid angle coverage 95%
- In-beam FWHM: 9.2% (@1 MeV)
- Full-energy-peak efficiency 35% at 1MeV



### Coulex of Neutron-Rich Fe and Cr





Energy (keV)

#### Coulex of Neutron-Rich Fe and Cr





Results for the B(E2) in <sup>66</sup>Fe agree well with a previous RDM lifetime measurement, while the measured B(E2) values in <sup>68</sup>Fe and <sup>64</sup>Cr are in good agreement with the prediction of large-scale shell-model calculations, after adjustment of the effective charges.

H. Crawford *et al.* 

# Principle and advantages of $\gamma$ -ray tracking

3D position sensitive Ge detector shell

Resolve position and energy of interaction points

Determine scattering sequence 12/3/2012





- Efficiency (50% Ω)
   Proper summing of
   scattered gamma rays, no
   solid angle lost to
   suppressors
- Peak-to-background (60%) Reject Compton events
- Position resolution (1-2 mm) Position of 1<sup>st</sup> interaction
- Polarization

Angular distribution of the 1<sup>st</sup> scattering

 Counting rate (50 kHz) Many segments

| $\gamma$ – ray tracking is essential                                                   |                                                                |  |  |  |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------|--|--|--|
| Especially for radioactive beam experiments                                            |                                                                |  |  |  |
| Tracking capabilities                                                                  | Experimental conditions                                        |  |  |  |
| High position resolution                                                               | Large recoil velocity<br>- Fragmentation<br>- Inverse reaction |  |  |  |
| <ul> <li>High efficiency</li> </ul>                                                    | Low beam intensity                                             |  |  |  |
| <ul> <li>High P/T</li> <li>High counting rate</li> <li>Background rejection</li> </ul> | High background rate<br>Beam decay<br>Beam impurity            |  |  |  |

### GRETINA

- Array covers  $\frac{1}{4}$  of  $4\pi$  solid angle ( $\epsilon = 7.5\%$ )
- 28 36-fold segmented Ge crystals
- Mechanical support structure
- Data acquisition system:1120 digitizers
- Data processing system: 500 nodes











12/3/2012

#### **GRETINA at BGS LBNL**

GRETINA set up at BGS target position
 Experiment September 7, 2011 – March 23, 2012



#### Slow beam test experiment

- GRETINA BGS coincidence
- Data acquired using separate systems
- Use time stamps to correlate data



#### **GRETINA at NSCL MSU**

GRETINA at target position of S800 spectrograph
Experiments started May 2012



EMIS2012

### Fast beam test experiment







12/3/2012

## Experiments at NSCL



#### Mirror nuclei in the upper fp shell



#### Case in point: A=62 T=1 Triplet



# Summary

- The combination of large γ-ray array and separator is a power tool which provides many science opportunities.
- For exotic nuclei studies, it is essential to use large γ-array together with separators.
- Opportunities to optimize future combined system together.
  - Separator parameters
    - space at target and focal plane,
    - (A,Z) identification,
    - velocity determination,
    - image size
  - $\gamma$ -ray array parameters -
    - efficiency,
    - energy resolution,
    - position resolution,
    - peak-to-background ratio



