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Features of BigRIPS separator
• 1) Large acceptances

– Comparable with angular / momentum spreads of  
in-flight fission at RIBF energy (+/-50 mrad, +/-5%)

• 2) Superconducting quads with a large aperture, 
and strong field
– Pole tip radius: 170 mm
– Max. pole tip field: 2.4 T

• 3) Two-stage separator scheme
– 1st stage : 2 bend, p/p=1260
– 2nd stage : 4 bend, mirror sym. @ F5, p/p= 3420
– Better resolution at 2nd stage for particle IDFrom SRC

Production & 
separation

Particle identification & 
two-stage separation

1st stage 2nd stage

Wedge
Wedge

STQ1-14:
Superconducting 
quad. triplets
D1-6: Room 
temp. dipoles (30 
deg)
F1-F7: focuses

Parameters:
a = +/-40 mrad
b = +/-50 mrad
p/p = +/-3 %
B = 9 Tm
L ~ 78 m

STQ
(Superferric Q)

Matching
section



Superconducting Triplet Quadrupole (STQ)

Superferric type
(STQ2-14)

Q500

Q500
Q800
(Q1000)

Racetrack Coils

Nb/Ti ConductorSextupole magnet is superimposed
on one of the Q500 magnet

pole tip radius
=170mm

warm bore radius
=120mm



• Large fringing field region
– Entire region must be treated as 

fringe.
• Large saturation effect

– Shape and effective length vary 
drastically with the magnet  
excitation.

 The effects of the varying field 
maps should be included in the 
simulation.

Our goal: accurate ion-optical setting
without any tuning

We have to overcome various problems concerning
short-length, large-aperture, and strong field magnets.

Br(z)
Q500

z position (mm)

effective length
Q500



Procedure of field map analysis 
and ion-optical calculation 

• Measure detailed 3D-field maps as a function of 
magnet current I.

• Deduce first-order distribution bn,0(z,I) from the 
measured field map.

• Fit bn,0 distribution by Enge function.                               
Its Enge coefficients are the function                               
of magnet current I.

• Make detailed ion-optical calculation                               
using the deduced Enge coefficients                               
with COSY INFINITY code.

• Search magnet current setting,                                       
which satisfies the desired ion-optical setting.
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Multipole analysis of 3D magnetic field
in cylindrical coordinate

(without skew terms for simplicity)

n=1: dipole
n=2: quadrupole
n=3: sextupole
…

measurement Fourier analysis

Extraction of bn,0

3D-magnetic field 
(Br, B, Bz(r,,z )) is 
expressed by bn,0(z) 
only.



Procedure to deduce bn,0 from Br(,n

Fourier
transform

(m>0)

z derivative can be translated into
simple algebraic calculation by FT

(originally performed by H. Suzuki)Differential equation for bn,m:



Fourier tr.

decomposed from measured data

Inv. Fourier tr.

Procedure to deduce bn,0 from Br,n

bn,0(z) is obtained without solving high-order differential equation



Procedure to deduce bn,0 from B,n

Fourier tr.

decomposed from measured data

Inv. Fourier tr.
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• Large fringe region
• The shape of the distribution 

varies much according to the 
excitation current.



Fringing field fitting
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Second term is introduced to express
under- & overshooting shaped fields.
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Enge coefficients ai are freely searched to minimize i [b2,0(zi)-Enge(zi)]2.



y = -1.8212x6 + 10.842x5 - 25.156x4 + 
28.561x3 - 16.433x2 + 4.5746x - 0.5603

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0 0.5 1 1.5 2

a1in 2006

a1in 2006
interpolate

y = 3.0393x6 - 17.908x5 + 41.066x4 -
45.837x3 + 25.555x2 - 6.795x + 

5.2771

4.35

4.4

4.45

4.5

4.55

4.6

4.65

0 0.5 1 1.5 2

a2in 2006

a2in 2006
interpolate

y = 0.6688x4 - 3.5704x3 + 
6.2857x2 - 3.5299x + 0.337

-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0 0.5 1 1.5 2
a3in 2006

a3in 2006
interpolate

y = 7.7862x6 - 47.713x5 + 114.94x4 -
137.1x3 + 83.873x2 - 24.918x + 3.9938

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

0 0.5 1 1.5 2

a4in 2006

a4in 2006
interpolate

y = -0.2841x4 + 1.4135x3 - 2.1694x2

+ 1.1293x - 0.6444

-0.58

-0.56

-0.54

-0.52

-0.5

-0.48

-0.46

-0.44

-0.42

-0.4
0 0.5 1 1.5 2

a5in 2006

a5in 2006
interpolate

y = 0.8231x4 - 3.5938x3 + 5.452x2

- 2.8522x + 0.4342

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.5 1 1.5 2

a6in 2006

a6in 2006
interpolate

Enge coefficients

Q current (×100A) Q current (×100A) Q current (×100A)

Q current (×100A) Q current (×100A)
Q current (×100A)

Enge coefficients are fitted with polynominal function.
 Fitted Enge coefficients are used in our optics calculation.

As a function of magnet current    (Q500, inner side)
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Ion-optical setting of BigRIPS

X

Y

1st stage 2nd stage (Mirror symmetry at F5)Matching section

P/P =         
1260 (1st stage) 
3420 (2nd stage)

F0            F1              F2         F3              F4             F5             F6             F7

Mirror symmetry
of F3-F5

(x|x)=-1.7, (x|a)=0,
(y|y)=-5.0, (y|b)=0,
(x|)=-21.4 mm/%, (a|)=0

(x|x)=-1.08, (y|y)=-1.18,
(x|a)=(y|b)=(a|x)=(b|y)=0

(x|x)=-1.40, (x|a)=-0.791,
(y|y)=-3.45, (y|b)=-0.272,
(x|)=-22.1 mm/%, (a|)=0

(x|x)=0.92, (x|a)=0,
(y|y)=1.06, (y|b)=0,
(x|)=31.7 mm/%, (a|)=0

(x|x)=2.0, (x|a)=0,
(y|y)=1.6, (y|b)=0,
(x|)=0 mm/%, (a|)=0

F3F5

F3F4

F2F3

F0F1

F0F2

F7F6
F7F5



B-I curve
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•same for other super-ferric quadrupoles and dipoles
•linear functions are used for air-core quads

agree within 0.1% order



Measurement of matrix elements with 
secondary beam 1st order matrix elements from F3 to F5

(x|x)

(x|a)

(a|)(x|)

F3x: ±1mm, F3a: ±1mrad gates are applied.  is gated with TOF37: ±1ns.

F5x vs F3x 
correlation

90Br is 
selected 
(produced 
by in-fight 
fission). 
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F5x vs F3a 
correlation

F5x vs TOF 
correlation
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correlation
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F5a vs F3x 
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Summary & issues
• Short-length, large-aperture and strong field superconducting magnets are 

used in the BigRIPS separator for 238U fission fragments. 
 Large fringe region with varying field distribution

• We are aiming at precise ion-optical setting without any tuning. Ion-optical 
calculation based on varying field maps is indispensable, otherwise even the 
first-order setting is not fulfilled.

• Procedures of 3D-field map analysis and ion-optical calculation are shown. 
New approach using the Fourier transform is applied to extract bn,0(z).

• bn,0 distribution is fitted by Enge function and used in COSY INFINITY for ion-
optical calculation. 

• Transfer matrix elements are well reproduced by the COSY, except for the 
focusing term (x|a), which is very sensitive to strength of magnets.  There is 
still room for improvement toward ion-optical setting without tuning.

• Application
– Various optical system design and analysis are achieved in spite of the varying 

fringing fields.
– A/Q resolution improvement  N. Fukuda’s talk (yesterday)

• efficient track reconstruction without using experimentally-determined first-
and higher-order transfer matrices (in progress…)



 Issues
• COSY predictability improvement (first order)

– measurement
• improvement of field-map measurement and analysis
• origin of errors

– quality of parameterization
• Fitting b2,0(z) distribution with Enge function
• Fitting Enge coefficients with a function of excitation current I

– B-I curve quality
– …
– B scan quality
– take care of interference

• not only QSX but also SXQ
• aberration study (higher order)

– phase space, profile
• transmission study

– MC
• …


