Ion-optical calculation with realistic three-dimensional field mapping for the BigRIPS fragment separator

28GHzECRIS
RILACII
Materials
Biology
RI poduction

H. Takeda

RIKEN Nishina Center

T. Kubo, K. Kusaka, H. Suzukì, N. Fukuda,

D. Kameda, N. Inabe, T, Ohnishì
sincilith International Conference on.
Electromagnetic Isotope Separators and Techniques
Related to their Applications (EMIS2012)
Matsue, Japan
2012/12/04

Features of BigRIPS separator

- 1) Large acceptances
- Comparable with angular / momentum spreads of in-flight fission at RIBF energy (+/-50 mrad, +/-5\%)
- 2) Superconducting quads with a large aperture, and strong field
- Pole tip radius: 170 mm
- Max. pole tip field: 2.4 T
- 3) Two-stage separator scheme
- $1^{\text {st }}$ stage : 2 bend, $p / \Delta p=1260$
- $2^{\text {nd }}$ stage : 4 bend, mirror sym. @ F5, p/ $\Delta \mathrm{p}=3420$

From SRC - Better resolution at $2^{\text {nd }}$ stage for particle ID
(Superferric Q)

Parameters:
$\Delta \mathrm{a}=+/-40 \mathrm{mrad}$ $\Delta \mathrm{b}=+/-50 \mathrm{mrad}$ $\Delta \mathrm{p} / \mathrm{p}=+/-3 \%$ $\mathrm{B} \rho=9 \mathrm{Tm}$ $\mathrm{L} \sim 78 \mathrm{~m}$

[^0]

Superconducting Triplet Quadrupole (STQ)

$=120 \mathrm{~mm}$
Fig. 2. Cross-sectional view of the prototype quadrupole.

Fig. 6. A schematic diagram of the prototype quadrupole triplet with small cryocoolers.

Sextupole magnet is superimposed on one of the Q500 magnet

Racetrack Coils

Our goal: accurate ion-optical setting without any tuning

We have to overcome various problems concerning short-length, large-aperture, and strong field magnets.

- Large fringing field region
- Entire region must be treated as fringe.
- Large saturation effect
- Shape and effective length vary drastically with the magnet excitation.
\rightarrow The effects of the varying field maps should be included in the simulation.

Procedure of field map analysis and ion-optical calculation

- Measure detailed 3D-field maps as a function of magnet current I.
- Deduce first-order distribution $b_{n, 0}(z, l)$ from the measured field map.
- Fit $b_{n, 0}$ distribution by Enge function. Its Enge coefficients are the function of magnet current I.
- Make detailed ion-optical calculation using the deduced Enge coefficients with COSY INFINITY code.
- Search magnet current setting,
$F(z)=\frac{1}{1+\exp \left[a_{1}+a_{2}(z / D)+\cdots+a_{6}(z / D)^{5}\right]}$
 which satisfies the desired ion-optical settıng.

Multipole analysis of 3D magnetic field

 in cylindrical coordinate

Procedure to deduce $b_{n, 0}$ from $B_{r(\theta), n}$

Differential equation for $b_{n, m}$:
(originally performed by H . Suzuki)

$$
b_{n, m}(z)=-\frac{r_{0}^{2}}{4 m(n+m)} \frac{n+2 m}{n+2(m-1)} \frac{\partial^{2}}{\partial z^{2}} b_{n, m-1}(z) . \quad(m>0)
$$

| Fourier |
| :--- | :--- |
| transform |\(\quad \begin{aligned} \& \tilde{b}_{n, m}(k)=\int_{-\infty}^{\infty} b_{n, m}(z) e^{-i k z} d z

\& \frac{\partial}{\partial z} \rightarrow-i k\end{aligned}\)
z derivative can be translated into simple algebraic calculation by FT

$$
\begin{aligned}
\tilde{b}_{n, m}(k)= & -\frac{r_{0}^{2}}{4 m(n+m)} \frac{n+2 m}{n+2(m-1)}(-i k)^{2} \tilde{b}_{n, m-1}(k) \\
= & \frac{\left(r_{0} k\right)^{2}}{4 m(n+m)} \frac{n+2 m}{n+2(m-1)} \tilde{b}_{n, m-1}(k) \\
= & q_{m} b_{n, m-1}(k) \\
= & q_{m} q_{m-1} \tilde{b}_{n, m-2}(k) \quad \\
& \vdots \\
= & q_{m} q_{m-1} \cdots q_{1} \tilde{b}_{n, 0}(k) \\
= & p_{m} \tilde{b}_{n, 0}(k)\left(p_{m} \equiv \prod_{i=1}^{m} q_{i}\right)
\end{aligned}
$$

Procedure to deduce $b_{n, 0}$ from $B_{r, n}$

$$
\begin{aligned}
& B_{r, n}(r, z)=\left(\frac{r}{r_{0}}\right)^{n-1} \sum_{m=0}^{\infty} b_{n, m}(z)\left(\frac{r}{r_{0}}\right)^{2 m} \\
& \begin{array}{l}
\qquad \begin{aligned}
& B_{r, n}\left(r=r_{0}, z\right)=\sum_{m=0}^{\infty} b_{n, m}(z) \\
& \text { Fourier tr. } \quad \tilde{B}_{r, n}(k)=\int_{-\infty}^{\infty} B_{r, n}\left(r=r_{0}, z\right) \\
& \text { decomposed from measured data }
\end{aligned} \quad \begin{array}{l}
-i k z \\
\end{array} d z
\end{array} \\
& \tilde{B}_{r, n}(k)=\sum_{m=0}^{\infty} \tilde{b}_{n, m}(k) \\
& =\sum_{m=0}^{\infty} p_{m} \tilde{b}_{n, 0}(k) \\
& \tilde{b}_{n, 0}(k)=\tilde{B}_{r, n}(k) / \sum_{m=0}^{\infty} p_{m} \\
& \text { Inv. Fourier tr. } \\
& b_{n, 0}^{\nabla}(z)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \tilde{b}_{n, 0}(k) e^{+i k z} d k
\end{aligned}
$$

$\mathrm{b}_{\mathrm{n}, \mathrm{0}}(\mathrm{z})$ is obtained without solving high-order differential equation

Procedure to deduce $b_{n, 0}$ from $B_{\theta, n}$

$$
\begin{aligned}
& \qquad \begin{aligned}
& B_{\theta, n}(r, z)=\left(\frac{r}{r_{0}}\right)^{n-1} \sum_{m=0}^{\infty} \frac{n}{n+2 m} b_{n, m}(z)\left(\frac{r}{r_{0}}\right)^{2 m} \\
& B_{\theta, n}\left(r=r_{0}, z\right)=\sum_{m=0}^{\infty} \frac{n}{n+2 m} b_{n, m}(z) \\
& \text { Fourier tr. decomposed from measured data } \\
& \tilde{B}_{\theta, n}(k)=\int_{-\infty}^{\infty} \sum_{B_{\theta, n}\left(r=r_{0}, z\right)} e^{-i k z} d z \\
& \tilde{B}_{\theta, n}(k)=\sum_{m=0}^{\infty} \frac{n}{n+2 m} \tilde{b}_{n, m}(k) \\
&=\sum_{m=0}^{\infty} \frac{n}{n+2 m} p_{m} \tilde{b}_{n, 0}(k) \\
& \tilde{b}_{n, 0}(k)=\tilde{B}_{\theta, n}(k) / \sum_{m=0}^{\infty} \frac{n p_{m}}{n+2 m} \\
& \operatorname{Inv} . \text { Fourier tr. } \\
& b_{n, 0}(z)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \tilde{b}_{n, 0}(k) e^{+i k z} d k
\end{aligned}
\end{aligned}
$$

Extracted $\mathbf{b}_{2,0}$ distributions

- Large fringe region
- The shape of the distribution varies much according to the excitation current.

Fringing field fitting

Enge coefficients a_{i} are freely searched to minimize $\Sigma_{i}\left[b_{2,0}\left(z_{i}\right) \text {-Enge }\left(z_{i}\right)\right]^{2}$.

(D : full aperture)

$$
\begin{aligned}
& \begin{array}{l}
F(z)=\frac{1}{1+\exp \left[a_{1}+a_{2}(z / D)+\cdots+a_{6}(z / D)^{5}\right]} \\
\quad+a_{7} \tanh \left(a_{8}+a_{9}(z / D)\right) \cdot \exp \left[-\left(\frac{z / D+a_{10}}{a_{11}}\right)^{2}\right]
\end{array} \\
& \text { Second term is introduced to express } \\
& \text { under- } \& \text { overshooting shaped fields. }
\end{aligned}
$$

Enge coefficients

As a function of magnet current
(Q500, inner side)

Enge coefficients are fitted with polynominal function.
\rightarrow Fitted Enge coefficients are used in our optics calculation.

Ion-optical setting of BigRIPS

B-I curve

Q500

-same for other super-ferric quadrupoles and dipoles -linear functions are used for air-core quads

Measurement of matrix elements with secondary beam ${ }^{1 \text { s o order matix elements from } F 3 \text { to } F 5}$

F3x: $\pm 1 \mathrm{~mm}, \mathrm{~F} 3 \mathrm{a}: \pm 1 \mathrm{mrad}$ gates are applied. δ is gated with TOF37: $\pm 1 \mathrm{~ns}$.

Comparison of the matrix elements

($x \mid x$)

(x|a)

($\mathrm{x} \mid \delta$)

Summary \& issues

- Short-length, large-aperture and strong field superconducting magnets are used in the BigRIPS separator for ${ }^{238} \mathrm{U}$ fission fragments.
\rightarrow Large fringe region with varying field distribution
- We are aiming at precise ion-optical setting without any tuning. Ion-optical calculation based on varying field maps is indispensable, otherwise even the first-order setting is not fulfilled.
- Procedures of 3D-field map analysis and ion-optical calculation are shown. New approach using the Fourier transform is applied to extract $b_{\mathrm{n}, 0}(\mathrm{z})$.
- $b_{n, 0}$ distribution is fitted by Enge function and used in COSY INFINITY for ionoptical calculation.
- Transfer matrix elements are well reproduced by the COSY, except for the focusing term ($\mathrm{x} \mid \mathrm{a}$), which is very sensitive to strength of magnets. There is still room for improvement toward ion-optical setting without tuning.
- Application
- Various optical system design and analysis are achieved in spite of the varying fringing fields.
- A/Q resolution improvement \rightarrow N. Fukuda's talk (yesterday)
- efficient track reconstruction without using experimentally-determined firstand higher-order transfer matrices (in progress...)

Issues

- COSY predictability improvement (first order)
- measurement
- improvement of field-map measurement and analysis
- origin of errors
- quality of parameterization
- Fitting $b_{2,0}(z)$ distribution with Enge function
- Fitting Enge coefficients with a function of excitation current I
- B-I curve quality
- ...
- Bp scan quality
- take care of interference
- not only Q \rightarrow SX but also SX \rightarrow Q
- aberration study (higher order)
- phase space, profile
- transmission study
- MC

[^0]: STQ1-14:
 Superconducting quad. triplets
 D1-6: Room temp. dipoles (30 deg)
 F1-F7: focuses

