

ISOLTRAP Reaches a New Era of Mass Spectrometry

Susanne Kreim for the ISOLTRAP Collaboration December 6th 2012

CERN, Genf, Schweiz

Max-Planck-Institut für Kernphysik, Heidelberg, Deutschland

Overview

- Introduction to the ISOLTRAP experiment
- Penning-trap mass spectrometry on radioactive beams
- Technical developments
- Physics results a selection

ISOLTRAP at ISOLDE / CERN

- **Goal**: precision Penning-trap mass spectrometry on pure samples of exotic nuclei
 - Mass of over 500 radioactive isotopes determined
- Radioactive beam is provided by ISOL technique:
 - Low-energy beam
 - Singly-charged ions
 - Exotic nuclei with ms half-lives
 - Isotopically pure beam`
 - Mixture of isobars

- Challenges at the outskirts of the nuclear chart:
 - Half-lives of only few ms
 - Minute production rates
 - High yield of contaminating ions

Purification and Preparation

Measurement Technique

5

Particle stored by superposition of strong homogeneous magnetic field in z direction and weak, electrostatic potential for axial confinement

B

$$\omega_c = \omega_+ + \omega_- \qquad \longrightarrow \qquad \omega_c = \frac{q}{m} E$$
$$m = \frac{V_c^{ref}}{V_c} (m_{ref} - m_e) + m_e$$

L. S. Brown and G. Gabrielse , Rev. Mod. Phys. 58, 233 (1986)

- From frequency to mass using time-of-flight ion-cyclotron resonance technique
- Single-ion experiment

M. König et al., Int. J. Mass Spectrom. 142, 95 (1995)

Recent Developments in PTMS

- Penning-trap mass spectrometry (PTMS) "high-precision measurements"
 - ➢ Relative uncertainties ≤ 10⁻⁸
 - Application: subtle nuclear-structure effects and fundamental tests
- Technical Achievements
 - Low 10⁻⁹ even 10⁻¹⁰ vacuum at 300K
 - $\checkmark~$ allows for long excitation times
 - Cryogenic buffer gas
 - ✓ limits charge-exchange losses
 - T-/p-stabilization limits systematic shifts
 M. Marie-Jeanne *et al.*, NIM A 587, 464 (2008)
 - Charge breeding enhances accuracy
 - ✓ S. Ettenauer et al., PRL 107, 272501 (2011)

$$\frac{\partial m}{m} \propto \frac{m}{q B T_{rf} \sqrt{N_{ion}}}$$

Recent Developments in PTMS

- Technical Achievements
 - Ramsey/octupole excitation
 - ✓ Gain in precision or faster measurement
 - ✓ S. George *et al.*, PRL **98**, 162501 (2007)
 - ✓ M. Kretzschmar, IJMS **264**, 122 (2007)
 - ✓ R. Ringle *et al.*, IJMS **262**, 33 (2007)
 - ✓ S. Eliseev et al., IJMS 262, 45 (2007)
 - Ramsey/octupole/SIMCO cleaning
 - ✓ T. Eronen *et al.,* NIM B **266**, 4527 (2008)
 - ✓ M Rosenbusch *et al.*, IJMS **314**, 6 (2012)
 - ✓ M. Rosenbusch *et al.*, IJMS **325**, 51 (2012)

Pure Samples for Spectroscopy

Isomeric mixtures can be purified in the precision trag

- Masses of ground and isomeric state can be measured
- Excitation energies can be determined
- Pure samples can be implanted on tape
 - Spin assignment via β-γ coincidences

Poster by T. Cocolios

- Pure samples can be guided to flexible decay-spectroscopy station
 - Alpha detector
 - Tape station

M. Kowalska et al., NIMA 689, 102 (2012)

"First Masses"

- **Goal**: Precision mass spectrometry on the outskirts of the nuclear chart
 - Applications: pronounced nuclear-structure effects and astrophysics
- <u>Challenges</u>: ms half-lives, minutes production rates, high contamination yield

- Implementation of multi-reflection time-of-flight mass separator (MR-TOF MS) has opened a wide range of possibilities
 - Support Penning-trap mass spectrometry on fast time scales
 - MR-TOF plus detector as a stand-alone system
 - Collaboration with TISD: yield measurements for target with new converter geometry
 - Collaboration with Nuclear Medicine Program

Online Operation of MR-TOF MS

Stacking

✓ lower production yield, higher contamination yield

- Only purifier for short cycle (tens of ms)
 Iower half-lives
- Direct mass measurements
 few tens of ms half-lives
- "Detector" in its own right
 spectroscopic experiments

R. N. Wolf *et al.*, NIM A **686**, 82 (2012) Similar developments:

H. Wollnik and M. Przewloka, IJMS 96, 267 (1990),
Y. Ishida *et al.*, NIM B 219, 468 (2004),
A. Verentchikov *et al.*, Tech. Phys. 50, 82 (2005),
W. Plaß *et al.*, NIM B 266, 4560 (2008)
P. Schury *et al.*, EPJA 42, 343 (2009)

⁸²Zn Mass for Astrophysics

11

- Combined all ISOLDE know-how to realize this measurement
 - UCx target with quartz transfer line
 - neutron converter and RILIS

Its determination is important for modelling of the crust of neutron stars

MR-TOF MS for Spectroscopy

- Investigate ionization efficiency with RILIS lasers for HFS information
 - Direct ion detection (FC or MCP)
 - > Detection of decay products
- ISOLTRAP's MR-TOF
 - single-ion sensitivity
 - High dynamics: 1 10⁵ ions/s
 - Background separation
 - Automated DAQ with RILIS

- BUT: Background not separated
- BUT: limited by decay branch, half-life, background

S. Kreim et al., INTC-P-299, IS 518 (2011)

time of flight - 32750 /µs

Synergy with Windmill Experiment and RILIS

Results omitted in online version.

A. Andreyev et al., INTC-P-319 (2012), S. Kreim et al., INTC-P-299, IS 518 (2011)

Direct Mass Measurements

Direct time-of-flight mass measurements with one well-known isobaric reference

Results omitted in online version.

S. Kreim et al., INTC-P-317, IS 532 (2011)

Summary and Outlook

- Great advances in PTMS experiments
 - High-precision mass measurements
 - Techniques for fast measurement of "first masses"
- MR-TOF MS is a versatile tool which offers new possibilities
 - Support existing PTMS program
 - ✓ ⁸²Zn for astrophysics
 - ✓ ⁵⁴Ca for nuclear-structure studies
 - MR-TOF MS plus detector as stand-alone system
 - Decay spectroscopy setup behind MR-TOF MS
 - MR-TOF MS @ S³ at GANIL

A. T. Gallant et al., Phys. Rev. Lett. 109, 032506 (2012)

ISOLTRAP Collaboration

D. Atanasov, <u>K. Blaum</u>, Ch. Böhm, Ch. Borgmann, R. B. Cakirli, S. Eliseev

S. George, M. Rosenbusch, R. Wolf, L. Schweikhard, F. Wienholtz

G. Audi, <u>D. Lunney</u>, M. Wang, V. Manea

D. Beck, <u>F. Herfurth</u>, J. Kluge, Y. Litvinov, E. Minaya-Ramirez, D. Neidherr

J. Stanja, <u>K. Zuber</u>

T. Cocolios, M. Kowalska, <u>S. Kreim</u>

S. Schwarz, G. Bollen

M. Breitenfeldt

S. Naimi

... for funding: BMBF, GSI, CERN, ISOLDE, MPG

Part of...

NAVI @ GSI

GS)

Federal Ministry of Education and Research

Thank you for your attention!

