Recent developments and research projects at the low-energy RI beam facility CRIB

Nuclear astrophysics group (CRIB supporting members) in Center for Nuclear Study, Univ. of Tokyo: Hidetoshi Yamaguchi (Lecturer), Daid Kahl (Postdoc.)

Taro Nakao (Postdoc.)

with an Aid of Technical Staff: N. Yamazaki (CRIB/Wien Filter), K. Yoshimura, T. Senoo, Y. Ohshiro (Hyper ECR ion source), S. Yamaka in Collaboration with:

RIKEN, KEK, Kyushu, Tsukuba, Tohoku, Osaka, ... (Japan) McMaster (Canada), CIAE, IMP (China), Chung-Ang, Ehwa, SNU (Korea), INFN Padova/Catania (Italy), IOP(Vietnam) and others.

CRIB

- CNS Radio-Isotope Beam separator, operated by CNS (Univ. of Tokyo), located at RIBF (RIKEN Nishina Center).
 - Low-energy(<10MeV/u) RI beams by in-flight method.</p>
 - Primary beam from K=70 AVF cyclotron.
 - Momentum (Magnetic rigidity) separation by "double achromatic" system, and velocity separation by a Wien filter.
 - Orbit radius: 90 cm, solid angle: 5.6 msr, momentum resolution: 1/850.

2012 Dec. 5

Why low-energy RI beam?

- Stellar astrophysical reactions :
 - T ~ 10⁶-10⁹ K (typically keV to a few MeV).
 - ⇒ Low energy is not bad energy!
 - It is an advantage for nuclear astrophysics and structure study.

The Sun

\bigcirc

SN1987A

•Nucleosynthesis proceeds through unstable nuclei in some processes(p-p chain, CNO cycle, r-, rp-, processes etc.)

CRIB in **RIBF**

- AVF alone, operation cost ~1/10 of BigRIPS.
- Ion source / AVF/ CRIB...have been developed under CNS-RIKEN collaboration (joint venture).

Low-Energy RI beam Productions at CRIB

Direct reactions such as (p,n), (d,p) and (³He,n) in inverse kinematics are mainly used for the production....large cross section

Many **RI beams** have been produced at CRIB: typically 10⁴-10⁶ pps

Recent developments at CNS/CRIB

- Ion source more intense / new beams (⁶Li, ⁴²Ca),
- Accelerator/Beam line "Core monitor" for nondestructive readout of the beam current *S. Watanabe et al., NIM A (2011*).
- Cryogenic target Used in most of experiments. *H.Yamaguchi et al., NIM A (2008).*
- Wien filter Improvement of insulators, monitoring system.
- Active target (GEM-MSTPC) Used in (α,p) reaction measurements.

2012 Dec. 5 EMIS 2012

Metal ion production at HyperECR... by Y. Ohshiro (CNS) For stable ion extraction...crucible position is important

Using a crucible with many exit holes

• Holes: $\Phi 2 \text{ mm} \times 5$

• Crucible Positioning At first, move it close to ECR zone to heat, then move it back.

 \Rightarrow ⁷Li²⁺ stable production at ~40mm \Rightarrow ⁸⁷Rb²⁰⁺ at stable production ~15mm

Dewar crucible with multiple holes

 Important points:
 Multiple Holes...helps stable ion extraction.
 Dewar...Temperature stable

Melted lithium

Dewar crucible

Cryogenic target: design

Features:

- Lq. N₂ cooling (automatic refill) for the better cooling power (~100 W) and thicker target.
- ⁷ Forced target gas flow (>30 l/min) to have a better cooling, and to avoid target thickness reduction by the high-current beam.
- Oxygen density monitoring

Intense secondary beam production using cryogenic gas target

- H₂ gas target of 760 Torr and 80 mm-long worked at 85K stably for a ⁷Li²⁺ beam of 1.3 pµA. (which deposits heat of 7.4W).
- Secondary beam: ⁷Be⁴⁺ at 4.0 MeV/u, purity 75% (without degrader/ WF),

2x10⁸ pps was achieved. *H. Yamaguchi et al., NIMA (2008)*

Price of ³He gas became 10 times higher in the last 4 years....a recycling system for ³He gas was built.

2012 Dec. 5

EMIS 2012

Wien filter

- 1.5 m-long HV electrodes, 8 cm distant from each other, ±200 kV applicable (stable up to ± 120kV), horizontal E field.
- Dipole magnet, max. 0.3 T vertical magnetic field.
- Spending much effort for the stabilization against discharge.

Improvement on the insulators

 The ceramic insulators for the negative high voltage had black trails of discharges. (due to small fragments on the surface?)

Recent works:

- Water-jet cleaning.
- A new type of high-voltage capable insulator (Kyocera).

International collaborations at CRIB

• CRIB experiments performed in 2007-2011, by collaborated members of CNS and other institutes:

Research projects (2010-)

•Proton/alpha resonant scattering

✓²⁶Si+p (Collaborated with Chung-Ang, Korea) H.S. Jung et al., published at PRC (2012).

✓⁷Li/⁷Be+α (CNS) H. Yamaguchi et al., PRC (2011).

✓²¹Na+p, ²²Na+p [¹⁸Ne(α ,p), Ne-Na cycle] (IMP/CIAE, China)

✓¹⁷F+p [Resonances for ¹⁴O(α,p)](IMP/CIAE, China) ←Latest measurement in June!

•(α,p) reaction measurement, Active target (GEM-MSTPC)

✓¹⁸Ne(α,p) (CNS, Hashimoto (now at RCNP))

✓³⁰S(α,p) (CNS, Daid Kahl)

✓²²Mg(α ,p) (IOP, Vietnam , Nguyen Ngoc Duy)

✓⁴⁴Ti(α ,p) (KEK, Ishiyama) ...⁴⁴Ti beam test in May successful.

•(α,γ)

 $^{16}N \Rightarrow ^{16}O^* \Rightarrow ^{12}C + \alpha$ for $^{12}C(\alpha, \gamma)$ (Catania, Italy, S. Cherubini)

•Reaction mechanism

✓⁸B+Pb (Padova, Italy, C. Signorini)

•β-decay

✓⁷Be lifetime in metal (Tohoku Univ, Otsuki) 2012 Dec. 5 *EMIS 2012* New project: industrial application of ⁷Be... A. Yoshida-san's talk

⁷Li+ α /⁷Be+ α study

- ⁷Li(α,γ)¹¹B ...important at high-T, as a production reaction of ¹¹B (the v-process in core-collapse supernovae).
- ${}^{7}\text{Be}(\alpha,\gamma){}^{11}\text{B}\dots$ one of the reaction in hot *p-p* chain, relevant at high-T. vp-process calculation predicts a contribution for the synthesis of carbon as much as the triple- α process.
- α -cluster structure in ¹¹B/¹¹C :
 - 2α+t/2α+³He cluster states are known to exist (similar to the dilute cluster structure in ¹²C.)
 - Several "bands" which have α-cluster structure could be formed. We can study the band and cluster structure more in detail.

⁷Li/⁷Be+α; method

 "Thick target with inverse kinematics" Resonant elastic scatterings can be measured at θcm=180 deg.

- ¹¹C+p; T. Teranishi et al., Phys. Lett. B (2003).
- ¹³N+p; T. Teranishi et al., Phys. Lett. B (2007).
- ²¹Na+p, ²²Mg+p; J.J. He et al, Eur Phys. J (2008) and Phys. Rev. C (2007).
- ⁷Be+p; H. Yamaguchi et al., Phys. Lett. B (2009).
 - We applied the method for proton +RI beams, but how good it can work for alphas? (Especially for light nuclei, where Z is not much different from 2.)

⁷Li+ α result

Strong alpha resonances were successfully observed, and we determined the α widths (Γ_α). *H. Yamaguchi et al., Phys Rev. C (2011).*

⁷Li+ α ; results

 Resonant reaction rates for the observed resonances are compared with NACRE evaluation (including resonances below 11 MeV).

•Newly proposed a negative parity band.

 It may not be a simple rotational band, but corresponds to a 2α-t structure [AMD Calc. by Suhara & En'yo]

Interpretation of the new negative-parity band Suhara & En'yo PRC (2012)

2012 Dec. 5

EMIS 2012

⁷Be+α Excitation functions

- Excitation functions of ${}^{7}\text{Be}(\alpha, \alpha)$ and ${}^{7}\text{Be}(\alpha, \rho)$ were obtained.
- ${}^{7}\text{Be}(\alpha, \rho)$...consistent with previous ${}^{10}\text{B}(\rho, \alpha)$ measurements.
- R-matrix analysis in progress....bringing new information on resonant widths, spin, and parity. Many resonant parameters are still unknown in such unstable nuclei.

Center-of-mass energy (MeV)

Study on the *ap*-process

- αp-process: (α,p),(p,γ) reactions occur faster than β-decay at high temperature. Accelerates the rp-process (Wallace and Woosley, 1981).
- Suitable objective for CRIB
 - Not many direct measurements of (α,p) reactions have been performed in other facilities.

• Acts as a He target and a detector (TPC) simultaneously

• 3-dimentional trajectory and energy loss can be measured \Rightarrow Good event identification.

Typical event of ¹⁸Ne(α, p)²¹Na reaction

Si telescopes

Development of Active Targets in CNS

•SHARAQ Gr. / Missing mass spectroscopy Gr.

•Ota, Tokieda, Lee et al.

•Astrophysics Gr. •Yamaguchi, Daid, Nakao

•Hamagaki, Gunji, Yamaguchi, Akimoto, Sekiguchi et al.

2012 Dec. 5

Active target at SHARAQ group

Physics Motivation: (d,d') reaction at the forward angle Giant Monopole Resonance/Gamow-Teller transition

Design:

- Angular coverage from 1 deg to 10 deg in c.m. frame with insensitive region around 4 deg corresponding to the inactive region between field cage and Nal
- Range and angular resolution are designed to be 0.4 mm and 30 mrad, which corresponds to 1-MeV excitation energy resolution

See S. Ota's poster

Summary

- CRIB is a low-energy RI beam facility operated by CNS, University of Tokyo, providing RI beams of good intensity and purity.
- Developments for RI beams....ion source, target, Wien filter
- Standard experiments: Proton/alpha resonant scattering, direct (α,p) reaction measurement using an active target (GEM-MSTPC)
- GEM-MSTPC
 - Has been used in several (α,p) measurements. Developments are on going, to make it a more reliable and stable system.

(avoiding discharges, gating grid, trigger system, DAQ, analysis framework)

- Resonant elastic scattering
 - ⁷Li+α,⁷Be+α...strong resonances were observed. The "thick target method with inverse kinematics" could be applied to many nuclides. We can study astrophysical reactions and alpha-cluster structures.

We welcome your new ideas!