Five Years of Applications of EXOCTIC radioactive ion beams at ISOLDE new tools, new ideas, new people

João Guilherme Correia

IST-ITN

Instituto Técnológico e Nuclear - Instituto Superior Técnico Universidade Técnica de Lisboa, Portugal

> and ISOLDE-CERN, Switzerland

"APPLICATIONS" OK

RADIOACTIVE BEAMS

Presenting a review of today's offer...

What is working and is new ...

- What is useful and ... usable
 - ➢ Who are the users ...
 - > Where ...

... aiming to work better in 10 – 15 years !

KEY Features for Sustainability of RIB Applications

SENSITIVITY / TRACEABILITY:

Very low concentrations of radioactive impurity atoms in materials, surfaces or interfaces can be detected or followed, e.g., in a body.

SELECTIVITY:

Element transmutation due to radioactive decay add chemical selectivity to "classical" spectroscopy techniques, e.g., photoluminescence, resistivity, deep level transient spectroscopy...

199192

PRODUCTION / AVAILABILITY Element and isotope Variety, Intensity and Purity

NANOSCOPIC SCALE INFORMATION:

Hyperfine interactions (ME, PAC, β -NMR) local information on magnetic and electric neighborhood

e-, β -, β +, α Emission Channeling

direct and precise lattice site location.

pick the right isotope to have TUNEABLE RANGE OF ENERGY DEPOSITION :

Different isotopes and decay particles can adapt to tumor or tumor cell killing.

2011

37 Experiments 300 Users 96 Institutes 22 Countries 235 8h-shifts of radioactive beams

SSP + BIO @ ISOLDE: Diverse community

THINKING Materials and Molecular Properties
dealing with mass, electromagnetism, many body systems and scaling
Atomic-like information is the aim !

Semiconductor Physics (Si, Oxides, organic compounds)
 Multi- ferroic- magnetic, Superconductors (correlated parameters}
 Nanomaterials (geometry, downsizing and integration)
 Surfaces and interfaces (bulk properties are modified)
 Soft matter : liquid crystals and graphen,
 Bio / Molecular chemistry and physics

→ THINKING Life Sciences <</p>

optimizing delivering and range of deposition of highly concentration of energy upon radioactive decay into the living body or cell of interest.
 Enlarging the choices of radioisotopes is the aim !
 ◆ NEW isotopes and decay modes for diagnosis and treatments.

RECENT DEVELOPMENTS

A commitment for the future based on facts !

On-line diffusion chamber at ISOLDE

2011

Understanding Diffusion and self diffusion ... On-line !

⁶¹Cu (3.3h) diffusion in Cd saturated CdTe

Isotope	t _{1/2}	Detection
³⁸ CI	37.3 min	β- _{4800keV} ; γ _{2168keV}
¹¹ C	20.38 min	<mark>β+</mark> ; γ _{511keV}
¹³ N	9.96 min	β+; γ _{511keV}
²⁹ AI	6.6 min	γ _{1273ke} V
(¹⁵ O)	122 s	β+; γ _{511keV}

Unknown Aluminum self diffusion

⁽T.G.Stoebe et al., Phys. Rev. 166 (1968) 621)

- Single stable Al isotope: no SIMS measurements Unknown activation energy of self diffusion in Al
 Unknown role of vacancies, di-vacancies at different temperatures.
- Unknown Al diffusion in Al-based compounds

From the Avogadro Project : define Kg in terms of number of Si atoms...

$$N_{\rm A} = \frac{V_{\rm mol}}{V_{\rm o}}.$$
$$N_{\rm A} = \frac{V_{\rm mol}}{(a^3/n)},$$
$$N_{\rm A} = \frac{M_{\rm Si}}{m} \frac{V}{(a^3/8)},$$

Scientific American 295, 102 – 109 (2006)

PL + L-DLTS apparatus at ISOLDE

LASER

- HeCd (3,8 eV)
- Nd:YAG (2,3 nm)
- Diode (1,9 nm)

Cryostat

He-Bathcryostat (1,5 – 300 K) Closed cycle

Monochromator

- Focus: 0,75 m
- Gratings: 150 1800 l/mm

Detectors

- CCD-camera (1,1 6,2 eV)
- Ge-Diode
- (0,7 1,5 eV)

... to measure optical properties of mono-isotopic Si.

15 October 2011

JOURNAL OF APPLIED PHYSICS

VOLUME **NUMBER**

Photoluminescence of deep defects involving transition metals in Si: New insights from highly enriched ²⁸Si by M. Steger, A. Yang, T. Sekiguchi et al.

AIP

777meV feature, now shown to include Pt and 4 Cu atoms!

Emission Channeling of decay particles, on single crystals $(\beta^2, \beta^4, c.e., \alpha)$

Lattice location study of implanted ⁵⁶Mn (2.6h) : Ge Implantation at 300°C

S. Decoster, U. Wahl et al., Applied Physics Letters 97, 151914 (2010)

Mn-doped Ge ←(?)→ spintronic devices, Mn_xGe_{1-x} ferromagnetic 25K... 116 K, TC increases linearly 0.6% <[Mn] < 3.5%.

Hyperfine Interactions with Mossbauer spectroscopy

Incoming 40-60 keV ⁵⁷Mn⁺ beam Intensity: ~2×10^{8 57}Mn⁺/cm²

Mössbauer drive with resonance detector

Development of 57Mn beam in late 1990s (with laser ionisation) brought about a new era in Mossbauer experiments at ISOLDE.

 Very clean, intense beam of ⁵⁷Mn (>3x10⁸ ions sec⁻¹)

Sel.

- Allows collection of single
 Mossbauer spectrum in ~ 3 mins.
- Able to collect many hundreds over course of a 3 day run.
- Allows low concentrations of probe atoms to be used (~10⁻⁴At%)

Fe: ZnO a ferromagnetic semiconductor? (nope!)

6 fold spectrum: characteristic of magnetic structure (at room temperature!!!).

Results in an external magnetic field show that the spectrum shown to be a slowly relaxing paramagnetic system.

Gunnlaugsson et al (APL 97 142501 2010)

After high-dose implantations, precipitates of Fe-III are formed. These form clusters yielding misleading information about the nature of magnetism in ZnO (as reported by many groups over the last number of years).

Gunnlaugsson et al APL 100 042109 2012

Mössbauer periodic table

Perturbed angular correlation (PAC) Spectroscopy applied to **BIOPHYSICS**

6.180° spectra and 24.90° spectra

ТІМІ $A_{22}G_{22}(t) = 2\frac{W(180^\circ, t) - W(90^\circ, t)}{W(180^\circ, t) + 2W(90^\circ, t)}$

^{111m}Cd(48m) PAC - Metal Ion Binding Site Structure: **Fast inter-conversion between species**

Matzapetakis et al. J. Am. Chem. Soc. 2002, 124: 8042; Lee et al. Angew. Chem., 2006, 45: 2864; Peacock et al. Proc. Nat. Acad. Sci. 2008, 105: 16566

^{111m}Cd PAC (48M) - De novo designed heavy metal Ion binding proteins: ns dynamics

Temp [ºC]	τ ₁ [ns]	τ ₋₁ [ns]
1	52	48
20	42	36
35	28	20
50	19	12

Stachura et al. Manuscript Science in preparation

In vivo experiments Hg(II) binding to barley ^{199m}Hg PAC (42M)

- 5-7 days-old plants
- Plant inserted into test tube.
- Fast uptake of Hg(II) (<1h)
- Bound to large molecules, similarities to HgS₂ compounds 2

2012 – first (and successful) ³¹Mg⁺ β-NMR experiment applied to soft condensed matter

Differential pumping and drop ³¹Mg⁺ implanted into an ionic liquid (EMIM-Ac): Mounted @ COLLAPS experiment

Monika Stachura, University of Copenhagen; Magdalena Kowa CERN, Geneva; Alexander Gottberg, CSIC, Madrid; Klaus Bla Planck Institute for Nuclear Physics, Heidelberg; Gerda Neyen Leuven University, (Leuven); Rainer Neugart, Mainz University (Mainz); Deyan Yordanov, Max Planck Institute for Nuclear Ph Heidelberg; Mark Bissell, Leuven University, (Leuven); Kim Kr Planck Institute for Nuclear Physics, Heidelberg

Radionuclides for diagnosis and therapy

Radionuclides for therapy

Radio- nuclide	Half- life	E mean (keV)	Eγ (B.R.) (keV)	Range		
Y-90	64 h	934 β	-	12 mm		Estab- lished
I-131	8 days	182 β	364 (82%)	3 mm		isotopes
Lu-177	7 days	134 β	208 (10%) 113 (6%)	2 mm	\checkmark	Emerging isotopes
					localize	Ae

radiation

Production of non-carrier-added ¹⁷⁷Lu

Irradiation in high flux reactor (e.g. ILL Grenoble), then chemical separation of ¹⁷⁷Lu from stable Yb.

Radionuclides for therapy

Radio- nuclide	Half- life	E mean (keV)	Eγ (B.R.) (keV)	Range	cross-	fire
Y-90	64 h	934 β	-	12 mm		Estab- lished
I-131	8 days	182 β	364 (82%)	3 mm		isotopes
Lu-177	7 days	134 β	208 (10%) 113 (6%)	2 mm		Emerging isotopes
Tb-161	7 days	154 β 5, 17, 40 e ⁻	75 (10%)	2 mm 1-30 µm		
Tb-149	4.1 h	3967 α	165,	25 µm		isotopes:
Ge-71	11 days	8 e-	-	1.7 µm		supply-
Er-165	10.3 h	5.3 e ⁻	-	0.6 µm	V	

localized

Modern, better targeted vectors require shorter-range radiation \Rightarrow need for adequate (R&D) radioisotope supply.

Linear Energy Transfer of Auger electrons

Very targeted therapy (high efficacy/low side effects) possible if "internalizing" vectors (peptides, antibodies,...) are found that penetrate the cancer cell's nucleus.

Terbium: a unique element for nuclear medicine

Dy 150 7.2 m	Dy 151 17 m	Dy 152 2.4 h	Dy 153 6.29 h	Dy 154 3.0 · 10 ⁶ a	Dy 155 10.0 h	Dy 156 0.056	Dy 157 8.1 h	Dy 158 0.095	Dy 159 144.4 d	Dy 160 2.329	Dy 161 18.889	Dy 162 25.475
4 23 9 387	4: a 4.07 7 336; 49; 546; 176 g; m	4 n 3.63 y 257 0	<; β* α 3.46 γ81; 214; 100: 254	a 2.87	⁶ β ⁺ 0.9; 1.1 γ227	ar33 Bola <0.009	× γ 328	ar 33 ma.a <0.006	e 7 58; e ⁻ 0 8000	ir 60 ₩e, ti ≪0.0003	σ600 ⊭n.α <1E-6	at 170
Tb 149 42m 4.1h # 3.92 # 3.92 1776, 192, 196, 196, 196, 196,	Tb 150 8.8 m 3.67 h 4.16*3.10 1608, 8.7., 1609, 4.3.49 1609, 4.3.49 1.609, 1.609, 1.609, 1.609, 1.609, 1.609, 1.609, 1.500, 1.609, 1.500, 1.600,	Tb 151 25 17.6 h 1/48, 49 70, 124, 49 70, 126, 126 70, 126, 126 70, 100, 126 70, 126 7	Tb 152 42 m 17.5 h 100. p* 2.0. (01. p* 2.0. (01. p* 2.0. (01. p* 2.0. (01. p* 2.0. (01. p* 2.0. (01. p* 2.0.) (01. p* 2.0.) (01	Tb 153 2.34 d	Tb 154 21 h 9.0 h 21 h - 17 - 246, 17 - 347, 17 - 19 -	Tb 155 5.32 d	Tb 156	Tb 157 99 a	Tb 158 10.5 s 180 s h((110) 544,	Tb 159 100	Tb 160 72.3 d β 0.6; 1.7 γ879; 299; 966 ¢ 570	Tb 161 6.90 d β ⁻ 0.5: 0.6 γ26; ⁴⁹ ; 75
Gd 148 74.6 a	Gd 149 9.28 d 1; a 3.016 7 150: 299: 347	Gd 150 1.8 · 10 ⁸ a	Gd 151 120 d \$;a 2.60 7154; 243; 175.	Gd 152 0.20 1.1 · 10 ¹⁴ a a 2.14; e 700 op. a <0.007	Gd 153 239.47 d 977; 103; 70 720000 97. u 0.03	Gd 154 2.18	Gd 155 14.80	Gd 156 20.47	Gd 157 15.65 #254000 #5.8<0.05	Gd 158 24.84	Gd 159 18.48 h	Gd 160 21.86

Imaging Studies Using PET and SPECT

C. Müller et al., J. Nucl. Med. (2012), in press. IS528 collaboration: supported by ENSAR, Swiss National Science Foundation and Swiss South African Joint Research Program.

CERN-MEDICIS:

Medical isotopes collected from ISOLDE

R. Catherall, M. Dias, T. Giles, Z. Lawson, S. Marzari, T. Stora (CERN)

Dr. Forni (**Clin. Carouge**), L. Vouga, Prof. P. Morel, Prof. L. Buehler, Prof. Y. Seimbille, Prof. O. Ratib (**HUG**, Geneva), Prof. D. Hanahan (**ISREC-EPFL**, Lausanne), Prof. J. Prior, Dr. F. Buchegger (**CHUV**, Lausanne), Prof M. Huyse, Prof. P. van Duppen (**Univ.**

Leuven), Prof. S. Lahiri (SINP, Kolkata)

The (potential) role of ISOL in nuclear medicine

- 1. Samples of R&D isotopes which are not commercially available or easily producible by other means.
- 2. Isotopes with ultimate specific activity for R&D, e.g. studies of efficacy versus specific activity.
- 3. Isotopes that are best produced by spallation (¹⁴⁹Tb,...).

Existing ISOL beams are sufficiently intense for preclinical studies, in certain cases even for clinical studies.

How to organize R&D with RIBs in nuclear medicine? Physicists are used to "travel to the isotopes", but isotopes must "travel to physicians and patients".

CONCLUSIONS

"Applications" of EXOCTIC radioactive isotopes Specific areas are identified: Life Sciences Materials Soft Matter Chemistry...

The methods follow the needs with progressing quality...

Viability and Visibility of "Applications" depend at the long term from diversifying and optimizing RIB infrastructures with: Dedicated BEAM TIME and BEAM LINES Dedicated LABORATORY SPACE

...the future of "Applications" depend very much on the concept of the next generation of RIB facilities

Acknowledgments

... to colleagues and collaborators!

- V. Amaral
- L. Amorim
- Y. Blumenfeld
- S. Decoster
- M. Deicher
- A. Fenta
- J.N. Gonçalves

- A. Göttberg
- H. Gunnlaugsson
- K. Johnston
- U. Köster
- M. Kowaslka
- A. L. Lopes
- T. Mendonça

- L. Pereira
- M. Stachura
- T. Stora
- U. Wahl
- and The ISOLDE collaboration