

Production cross section measurements of radioactive isotopes by BigRIPS separator at RIKEN RI Beam Factory

--- RIs produced from ⁴⁸Ca, ²³⁸U, and ¹²⁴Xe beam ---

<u>Hiroshi Suzuki</u>, N. Fukuda, H. Takeda, D. Kameda, H. Sato, Y. Shimizu, T. Ohnishi, N. Inabe, and T. Kubo RIKEN Nishina Center, RIKEN

EMIS2012, Matsue, Dec 7, 2012

Outline

1. Introduction

- Production rate and cross section
- RI beam production at BigRIPS separator
- Particle Identification (PID) at BigRIPS
- 2. Production rates and cross sections of radioactive isotopes (RIs)
 - Neutron-rich nuclei by projectile fragmentation from ⁴⁸Ca beam
 - Neutron-rich nuclei by in-flight fission from ²³⁸U beam
 - Neutron-deficient nuclei by projectile fragmentation from ¹²⁴Xe beam
- 3. Summary

Production rate and cross section

Measurement of production cross section is important.
 → Allowing accurate estimation of RI beams.

Production rate is deduced from ...

- Yield
- Beam intensity

Deduced from the count rate of scattered particles from F0 target.

Transmission

Deduced from the LISE++ calculation (Monte Carlo mode).

For cross section ...

• Target thickness

A variety of RIs have been produced at BigRIPS since the commissioning in 2007.

 We have measured a lot of data of production rates deducing cross sections.
 ⁴⁸Ca beam : neutron-rich nuclei by projectile fragmentation
 ²³⁸U beam : neutron-rich nuclei by in-flight fission two mechanisms ... Abrasion fission with Be target Coulomb fission with Pb target
 ¹²⁴Xe beam : neutron-deficient nuclei (incl. ¹⁰⁰Sn) by projectile fragmentation low-Bρ-side tail of the Bρ distribution

Production reactions of RI beams at BigRIPS

Projectile fragmentation

• Abrasion-ablation model

 All kinds of fragments (RI beams) lighter than projectile can be produced.

Pb

neutron-rich isotopes.

Very powerful for medium heavy

fission

238

•

COULEX

Particle Identification scheme at BigRIPS

BigRIPS: T. Kubo, NIM B 204 (2003) 97, & T. Kubo et al., IEEE Trans. Appl. Supercond. 17 (2007) 1069.

Neutron-rich nuclei by projectile fragmentation from ⁴⁸Ca beam

Yields of neutron-rich RI beams using a ⁴⁸Ca beam at 345 MeV/u

Recent ⁴⁸Ca-beam Intensity : ~400 pnA (May 2012)

Measured production cross sections comparison with EPAX 2.15 (⁴⁸Ca 345 MeV/u + Be)

Cross section (mb)

Be target thickness

¹⁹ C	20 mm, 30 mm
²⁹ Ne	10 mm, 15 mm
³² Mg	10 mm, 20 mm
⁴⁰ Si	5 mm, 15 mm
⁴² Si	15 mm, 20 mm

• Fairly good agreement between the production cross section from the experimental results and the LISE++ calculation with EPAX 2.15.

Neutron-rich nuclei by in-flight fission from ²³⁸U beam

Various setting for in-flight fission of ²³⁸U at 345 MeV/u

N	SHINA	setting 1											3
СE	N T E R Target	Be 7 mm					Pb 1.5 mm Be 5.1 mm		Be 2.9 mm		Pb + /	0.95 mm Al 0.3 mm	
	<i>Βρ</i> (Tm)	7.2		7.4		7.6	7.0	7.902		7.990			7.706
	∆р/р	±1%		±1%		±2%	±0.1%	±3%		±3	%		±3%
	Degrader None		one	None		None	None	F1: 1.29 mm		F1: 2.18 mm		F1: 2.56 mm F5: 1.8 mm	
	F2 slit (mm)	±	±30 ±30		C	±30	±50	±13.5		±15.5		±15 mm	
	Target Be 4.00 mm $B\rho$ (Tm) 7.306 $\Delta p/p$ $-2\%/+3\%$ Degrader F1: 1.27 mm F2 slit (mm) $-3/+15$ F7 slit (mm) $-5/+25$		Be 4.93 mm		W 0.7 mm	Be 4.93 mm		W 0.7 mm					
			7.306 -2%/+3% F1: 1.27 mm F5: 1.40 mm -3/+15		6.950 -2%/+3% F1: 1.27 mm F5: 1.40 mm -4/+15		6.950	6.950	7	7.300	6.9	50	7.300
							-2%/+3%	±0.1%	±	:0.1%	±0.1% ±		±0.1%
							F1: 1.27 mm F5: 1.40 mm	None	ſ	None			None
							-4/+15	±120	=	±120	±1	20	±120
			-5/+	/+25		±15	±15	±120	-	±120	±1	20	±120

Yield measurements for in-flight fission of ²³⁸U at 345 MeV/u

Setting	1	2	4	5	3	
Region	Z ~ 30	Z ~ 40	Z ~ 60	Z ~ 65	Z ~ 50	
Production mechanism		Coulomb fission + Abrasion fission				
Target	Be 5.1 mm Be 2.9 mm Be 4.00 mm Be 4.93		Be 4.93 mm	Pb 0.95 mm + Al 0.3 mm		
B $ ho$ (Tm)	7.902	7.990	7.306	6.950	7.706	
∆p/p	±3%	±3%	-2%/+3%	-2%/+3%	±3%	
Degrader	F1: 1.29 mm	F1: 2.18 mm	F1: 1.27 mm F5: 1.40 mm	F1: 1.27 mm F5: 1.40 mm	F1: 2.56 mm F5: 1.8 mm	
F2 slit (mm)	±13.5	±15.5	-3/+15	±15	±15 mm	
F7 slit (mm)			-5/+25	±15		

Production rates of the fragments in setting-1 & 2 and comparison with LISE++ predictions by AF model

²³⁸U⁸⁶⁺ 345MeV/u + Be

Abrasion fission

• Fairly good agreement with LISE++ calculation with Abrasion fission model around the region of $Z = 25 \sim 50$.

²³⁸U⁸⁶⁺ 345MeV/u + Be Abrasion fission + Projectile fragmentation

Kinematics of fragments: angular and momentum distributions for 168 Gd (Z=64) Wide spreads: Y-angle(ϕ) at F3 $B\rho$ distribution consistent with 6.711 Tm -30 mr +30 mr 6.324 Tm fission! 45 Exp. Exp. Preliminary 40 35 30 25 orojection ----²³⁶U (345.0 MeVA) + Be (5 mm); Transmitted Fragment¹⁶⁶Gd ^{63+ 64+ 64} Iges: Al (1.29 mm), Al (1.5 mm); Brho(Tm): 6.9500, 6.4895, 6.4464, 6.4464, 5.9740, n — ²³⁸U (345.0 MeV/u) + Be (5 mm); Trans mitted Fragment ³⁸⁶Gd ^{63, 64,64,64,64,64,64,64,65,97,40,5.9 s: Al (1.29 mm), Al (1.5 mm); Brho(Tm); 6.9500, 6.4895, 6.4464, 6.4464, 5.97,40, 5.9} dp/p = 6.00LISE++ LISE++ ուրույրուներուներունել ԽՎ_ՆՆՆ-լև Abrasion-fission after."E2.E3 drift": Y'(Phi) [mrad]: ojec∎on --- ²³⁰U (345.0 MeV/u) + Be (5 mm); Trans mitted Fragment ¹⁶⁰G d ^{6+ 6+ 6+ 6+ 6+ 6</sub> dges: Al (1.29 mm), Al (1.5 mm); Brho(Tm); 6.9500, 6.4895, 6.4464, 6.4464, 5.9740, 5} LISE++ LISE++ Projectile fragmentation after "E2-E3 drift": Y'(Phi) [mrad]: window projection after "D3": Brho [T*m]: window projectio

Production rates of setting-3 fragments and comparison with LISE++ predictions by CF+AF model

²³⁸U⁸⁶⁺ 345MeV/u + Pb

Z~50

Coulomb fission + AF

Fairly good agreement with LISE++ calculation with "Coulomb fission + • Abrasion fission" models around the region of $Z \sim 50$.

Neutron-deficient nuclei by projectile fragmentation from ¹²⁴Xe beam

Production of neutron-deficient RI beams using a ¹²⁴Xe⁵²⁺ beam at 345 MeV/u

- The first Xe-beam experiment in RIBF in Nov. 2011.
- Produced neutron-deficient nuclei with $Z = 40^{20}$.
- Measured the distribution tail of low $B\rho$ side.

Production rate of neutron-deficient Sn isotopes from a ¹²⁴Xe beam at 345 MeV/u

• Production rate of ¹⁰⁰Sn is ~ 1/10 of LISE++ calculation with EPAX 3.01

Recent ¹²⁴Xe-beam Intensity : ~30 pnA (Jun 2012)

cf) ¹⁰⁰Sn (optimized setting) ... Yield : 0.0022(7) cps/30 pnA, Purity : 0.0016%

Measured production cross sections comparison with EPAX 3.01 (¹²⁴Xe 345 MeV/u + Be)

- Fairly good agreement between the experimental results and the LISE++ calculation with EPAX 3.01 at close to the stable region.
- However, in more neutron-deficient region, the experimental cross section is smaller than EPAX 3.01 (in the case of ¹⁰⁰Sn: 1/10).

• ⁹⁷Rh: high $B\rho$ side is seen.

 \rightarrow B ρ distribution agrees with LISE++ calculation.

• ⁹⁹Rh: low $B\rho$ side is seen (low- $B\rho$ -side tail).

 \rightarrow the tails are smaller than the LISE++ calculation.

Summary

- Production cross sections (production rates, yields) of various RIs are measured using with BigRIPS separator at RIKEN RI Beam Factory.
- These cross section data are available at

http://www.nishina.riken.jp/RIBF/BigRIPS/intensity.html

- Neutron-rich RIs are produced by fragmentation from ⁴⁸Ca beam at 345 MeV/u.
 - Fairly good agreement with EPAX2.15 parameterization in LISE++ calculation.
- Neutron-rich RIs are produced by In-flight fission from ²³⁸U beam at 345 MeV/u.
 - Production yields are obtained with Be and Pb targets.
 - Fairly good agreement with LISE++ calculation using the Abrasion-fission model for Z~30,40 region.
 - We measured the yield of the nuclei around the region of Z~60.
 - Fairly good agreement with LISE++ calculation using the Coulomb-fission & Abrasion-fission model for Z~50 region.
- Neutron-deficient RIs are produced by fragmentation from ¹²⁴Xe beam at 345 MeV/u.
 - Fairly good agreement with EPAX 3.01 parameterization around stable region.
 - In more deficient region, the yield is less than the EPAX parameterization.
 - The low $B\rho$ tails falls faster than the LISE++ calculation.