

Canada' s National Laboratory for Particle and Nuclear Physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Yield Chart of Nucleids yield (ions/s) ISAC-I and ISAC-II Facility

New Generation of ISOL Target Station for Intense RIB

Radioactive Isotope Beam Physics High intensity, clean, rare isotope beams

> Pierre Bricault, Friedhelm Ames, <u>Jens Lassen</u>, Marik Dombsky | TRIUMF Targets & Ion Sources Dept.

> > EMIS 2012, Matsue (Japan)

l and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d' un consortium d' universités canadiennes, géré en co-entreprise à partir d' une contribution administrée par le CNRC

next generation of ISOL target station for intense RIB

TRIUMF

EMIS 2012, Matsue (J

TRIUMF

- RIB physics at TRIUMF
- ISOL method for RIB production
- next generation ISOL targets & target station requirements:

Vancouver, BC, Canada

increased driver beam intensity

- -> high power targets
 - target materials & UC_x ion sources reliabily

ARIEL project at TRIUMF, 500 kW e⁻ on Uc

P. Bricault, M. Dombsky, J. Lassen TRIUMF Ion Sources & Targets Division

RIB physics @ TRIUMF

RIUMF

P. Bricault, M. Dombsky, J. Lassen | TRIUMF Ion Sources & Targets Division

RIB production mechanisms

ISOL concept

P. Bricault, M. Dombsky, J. Lassen TRIUMF Ion Sources & Targets Division

I isotope separator on-line

RIUMF

ISOL target-ion source modules

high power ($55 \le I_p \le 100 \ \mu A$) 35-50 kW target with transport tube / surface ionizer

P. Bricault, M. Dombsky, J. Lassen TRIUMF Ion Sources & Targets Division

CTRIUMF

high power target fabrication

(i) ceramic powder suspended in a solvent, which contains dissolved polymers that favor the powder dispersion. This mixture in suspension is poured into a mold or onto a backing foil and then allowed to dry.

(ii) dried slip cast, with ceramic powder particulates and polymer binders, is easily cut into the desired shape using LASER cutting.

(iii) these carbide ceramics can be used up to 40 μ A. Their low thermal conductivity compared to metal foils, necessitates an increase in thermal conductivity of the carbide ceramics to allow targets operation at higher beam intensity.

-> We developed ceramic powders and polymers bound to an exfoliated graphite foil. These composite carbide targets are capable of dissipating high power. The ceramic layer is typically 0.25 mm thick, while the graphite layer is around 0.13 mm thick.

OTRIUMF

UCx fabrication - the target material

Ucx from UO2 + graphite,

ground to fine power in a plasticiser solution using a ball-mill,

carbonization under vacuum,

sheet is milled in a plasticiser solution again,

solution is cast onto a graphite foil

cut target disks are then cut from the "green" cast

target disks are load into the target container for thermal conditioning (under vacuum).

Ucx advantage:

Good thermal conductivity, compared to UO₂ Low vapour pressure at high temperatures Concerns:

Exothermic oxidation operation safety

long-term stability after use storage of irradiated targets

Regulatory:

Handling, inventory, accounting & envirnomental

P. Bricault, M. Dombsky, J. Lassen | TRIUMF Ion Sources & Targets Division

TRIUMF

test chemical stability of UC_x

chemical reactivity in air

Exposed raw and sintered UC_{x} to air for different periods of time.

Chemical reactivity in air at higher temp.

Heated the raw and sintered UC_{x} up to 400 degree Celcius.

Chemical reactivity in water

Exposed raw and sintered UC_x to water. tests show that the UCx material is quite stable and can be used safely within the ISAC operation Environment.

Note>: metallic U is reacts with hot metals

target oven damage – stress & chemistry

P. Bricault, M. Dombsky, J. Lassen | TRIUMF Ion Sources & Targets Division

RIUMF

UC_2 target characterization

SEM: particle size and porosity

L-edge densitometry (in collaboration with ITU, Karlsruhe)

Spatially resolved thickness measurements on UC_2 target discs

XRF: contaminants

Mass distribution in D-shaped target disc (deviation from mean thickness in %)

target development 2012

UO_2 target with FEBIAD ion source @ 10 μA

extracted:

He, Li, Na, Xe, Cs,Kr, Rb, Sr, Zn, Cu, Br, Ga, Ar, K, Ag, In, Cd,I, Bi, Po, At, Sb, Rn, Fr, Ra, Cr, Mn, Co, Pb, Tl, RaF, BaF

Isotopes produced @ ISAC

Yield Chart of Nucleids

ion Source for High Power Target

P. Bricault, M. Dombsky, J. Lassen | TRIUMF Ion Sources & Targets Division

Temperature in Degrees Centigrad

hot plasma ion source

TRIUMF

FEBIAD is a hot plasma ion source used for TUDA ${}^{18}F(p, \alpha){}^{15}O$ FEBIAD with a high power composite target se.g. SiC/gr, TiC gr, ZrC/gr at 70 μ A.

Developed plasma ion source operating with proton beam intensity up to 100 μ A (50 kW beam power)

FEBIAD Ion Source, section view.

EMIS 2012, Matsue (Japan)

FEBIAD

RIUMF

high performance ECR ion source

(i) Radiation resistant ECRIS for mono charged ions.

- No permanent magnets

(ii) High level of confinement, using 4 coils arrangement

(iii) Tests were done to measure ionization efficiency

Element	I Eff %
F	72
Ne	48
Kr	48 [*]
Xe	40*

• higher charge state are produced also..

Extracted RIB:

- Safety upgrades (target hall filtration system and various safety systems)
- CNSC license amendment (increasing max. p+ current from 2 μ A / 1000 μ Ah to 10 μ A / 5000 μ Ah)
- 2 UC₂ target runs at 2 μ A (August 2011) and 10 μ A (December 2011)

Element	Ionization method	Element	Ionization method
Ac	Surface, laser	Ca	Surface
Ra	Surface	К	Surface
At	Laser	Mg	Laser
Fr	Surface	Na	Surface
Cs	Surface		
In	Surface		
Rb	Surface		

high power target

TRIUMF

radiation enhanced diffusion

most striking result of operating at higher proton beam currents: radiation enhanced diffusion (RED).

- Targets have to operate in high radiation dose environment making repair and maintenance extremely difficult and challenging.
- After been irradiated it is nearly impossible to have access to the target /ion source assembly for fine diagnostics.
 - Need high reliability
 - To guaranty beam time to users
 - RIB repeatability, to maximize beam time,
 - Minimize dose for repair and maintenance,

Neutron-rich Mg from UC_2 target #3

Resonant laser ionization provides a very pure beam, with a total ion yield ratio for *laser off/laser on* of $1.4 \cdot 10^{-4}$ @33amu.

200

205

210

215

A (amu) P. Bricault, M. Dombsky, J. Lassen | TRIUMF Ion Sources & Targets Division

220

225

230

Target Development 2012

C and CO beams from a NiO-FEBIAD target

from UC₂ targets @ 10 μ A

10³

10²

75

Br (Z=35)
 Kr (Z=36)
 A Rb (Z=37)

80

85 A (amu) 90

95

ISAC Remote Handling Technology

ISOLDE @ CERN 1.4 GeV $\Phi_{av} \sim 2\mu A$

TRIUMF Ion Sources & Targets Division

ISAC facility, technologies

(i) target module at bottom of shield plug

(ii) rad.sensitivecomponentsremoved

(iii) manipulations in hot-cell

P. Bricault, M. Dombolay, Intessen, TRIUME Ion Source & Targets Division

Failure mode & effect analysis FEMA -> relibability increase

Designs and processes have been analyzed to improve the Target/ion source reliability

FMEA is used in product development in manufacturing industries for example, where it helps to identify potential failure modes based on experience. To help focusing on the critical failure mode(s) it is important to come up with some sort of rating of the risk.

We have applied this analysis to prepare for next generation of RIB facility.

ALICE: ARIEL laser ion source

new facilities using n and γ for U fission

• goal 10¹⁵ fissions/s

for reliable operation these targets have to be capable of sustaining power deposition in target, target chemistry & thermal conductivity.

- \Rightarrow development of composite UC_x and high power targets is critical for the success these facilities.
 - e.g. ARIEL photo-fission hinges on

high conductivity target material due to the high power deposited by the photons. (problem: e-e+ pair production). 500 kW e⁻ => 75 kW power dissipation in the UC_x target.

Isobar suppression is imperative to enable successful experiments
=> Combination of techniques required

Cross Section (mb)

 $N_{\rm fission}/S$

10¹¹

 10^{10}

0

10

20

30

40

E_e (MeV)

50

P. Bricault, M. Dombsky, J. Lassen | TRIUMF Ion Sources & Targets Division

•

beam on Ta convertor and U target.

60

GEANT4 -> optimiunm 50-75MeV e- energy

70

80

photo-fission characteristics

Photo-fission of 238U proposed by W.T. Diamond, CRL (1999) Nucl. Phys. A 701 (2002) 87

Beam power (MW)		0.5
Duty Factor		100%
Average current (mA)		10
Kinetic energy (MeV)	5 2012	, Matsue (Japan

more RIB to users multiplexing

RIUMF

100 kW converter

GEANT4 simulation shows that 96% of the γ are within a 10° cone

Power distribution for a 100 kW beam onto a Ta converter and UC₂ target

500 kW converter

For beam power above 150 kW apply the static target solution for a converter.

Options for a ½ MW converter:

Water-cooled rotating wheel:

Liquid metal converter

Power distribution:

74 kW in converter, 75 kW in targ

- The is a long list of new ISOL proposals and projects under way with the goal to increase the RIB intensity:
 - SPIRAL-II, ARIEL, KORIA, CARIF, EURISOL, ANURIB ...
- All these projects or proposals utilize a much higher beam power or power deposition in the target material
 - either from neutrons or high energy gammas
- Target stations and target/ion source assemblies have to be designed in consequence of this new paradigm.

caveats:

- (i) it may be more cost effective to improve target release parameters and isobar suppression over brute force driver power increase
- (ii) Licensing requirements will have to be observed -> nuclear inventories matter

Bricault, M. Do

ARIEL/TRIUMF target station concept

Uses Target Module similar as for ISAC – evolution not revolution:

Sealed containment box.

Simplified vacuum system.

Better vacuum

Quick disconnect vacuum envelope using pillow seals technique developed for T2K Designed for remote handling access.

ssen TRIUMF Ion Sour

seals for T2K handling Target Module Heavy Ion Beam Lines and Diagnostics

Service Cap Pumping Stations

Hermetic Containment

Roagets Division

Beam Lir to experi

TRIUMF

critical technologies for higher ISOL RIB intensity

(i) High power tolerant targets & ion sources

- Refractory foils target, Ta, Nb ... operate at 100 µA, corresponding to 50 kW proton beam power
- Composite target have high thermal conductivity
 - Carbide targets, SiC, TiC, ZrC, UC on Graphite foil are operating in the range of 70 to 80 µA, 500MeV p+
 - Oxide targets, NiO, Al₂O₃ on Nb or Ta foil run at 20 to 35 µA p+

(ii) Target container capable to dissipate the beam power from target material -> container -> heat-shield -> cooling system.

(iii) Beam trip limitation T_{trip} <5sec, as beam trips temperature cycle.

Critical Technologies for Higher ISOL RIB Intensity

(iv) Ion Source: capable of operating efficiently in a wide pressure range

Marik Dombsky ISAC target chemist, ret.

TRIUMF IST group: F. Ames, P. Bricault, M. Dombsky, J. Lassen, P. Levy, G. Minor, B Moss, J. Wong, R.

RIUMF

Mahaharaj, A. Laxdal, D. Jackson, M. della Valle, F. Labrecque

The Great Blue Heron is protected under the British Columbia government's Wildlife Act

Canada's National Laboratory for Particle and Nuclear Physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

New(er) Generation of ISOL Target Station for Intense RIB

Radioactive Isotope Beam Physics

High intensity, clean, rare isotope beams - the continuous quest -

Pierre Bricault, Friedhelm Ames, Jens Lassen, Marik Dombsky | TRIUMF Targets & Ion Sources Dept.

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada

TRIUMF: Aberta | British Columbia | Calcary Carleton | Guelph | Manitoba | McMaster Montréal I Northern British Columbia | Queen's Regina | Saint Mary's | Sirron Fraser | Toronto Victoria | Winnipeg | Yark

Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada