LEBIT II: Upgrades and Developments for High Precision Mass Measurements with Rare Isotopes

Matthew Redshaw, Central Michigan University EMIS XVI, Matsue Dec 7th 2012

LEBIT:

Low Energy Beam and Ion Trap

LEBIT:

Low Energy Beam and Ion Trap

LEBIT I: 2000 - 2009

- Single linear gas cell
- Delivers low energy beams only to LEBIT

Results from LEBIT I (2005 – 2009)

Precise masses for more than 30 isotopes and more than 10 elements ²⁶Si, ³²Si, ³³Si, ²⁹P, ³⁴P, ³⁷Ca, ³⁸Ca, ⁴⁰S, ⁴¹S, ⁴²S, ⁴³S, ⁴⁴S, ⁶³Fe, ⁶⁴Fe, ⁶⁵Fe, ⁶⁶Fe, ⁶⁶Fe, ⁶⁶Co, ⁶⁵Co, ⁶⁶Co, ⁶⁷Co, ⁶³Ga, ⁶⁴Ga, ⁶⁴Ge, ⁶⁵Ge, ⁶⁶Ge, ⁶⁶As, ⁶⁷As, ⁶⁸As, ⁸⁰As, ⁶⁸Se, ⁶⁹Se, ⁷⁰Se, ⁸¹Se, ^{81m}Se, ^{70m}Br, ⁷¹Br

LEBIT II: 2009+

LEBIT II: Status

- 2009 2010: LEBIT relocated to new stopped beam area
- 2011: LEBIT successfully recommissioned with offline ion source
- 2011 2012: Program of mass measurements with stable isotopes initiated
- Early 2013: Delivery of rare isotope beams to LEBIT expected

LEBIT II: Recent Offline Results

• Determination of $\beta\beta$ -decay Q-values for $0\nu\beta\beta$ -decay experiments

High-precision $Q_{\beta\beta}$ values using LEBIT ${}^{48}Ca{}^{-48}Ti:$ $Q_{\beta\beta} = 4262.93(85) \text{ keV [1]}$ ${}^{82}Se{}^{-82}Kr:$ $Q_{\beta\beta} = 2997.87(23) \text{ keV [2]}$ ${}^{82}Se{}^{-82}Kr:$ $Q_{\beta\beta} = 2997.87(23) \text{ keV [2]}$ ${}^{78}Kr{}^{-78}Se:$ $Q_{2EC} = 2847.75(27) \text{ keV}$

[1] M. Redshaw, et al., PRC 86, 041306 (2012)
[2] D.L. Lincoln, et al., PRL (in press)

Developments to extend measurements to the most exotic isotopes available

Challenges

- Low Production Rates
- Short Lifetimes
- Contamination

Solutions

- Increase Sensitivity
- Increase Efficiency
- Minimize Stopping Times
- Optimal use of Beam Time
- Increase Precision

Next Generation Gas Cells

More Efficient Removal of Contaminant Ions

Magnetic Field Monitoring

Implementation of New Measurement Techniques *

*

*

Developments to extend measurements to the most exotic isotopes available

Challenges

- Low Production Rates
- Short Lifetimes
- Contamination

FACILITY FOR RARE ISOTOPE BEAMS

Next Generation Gas Cells

Solutions

- Increase Sensitivity
- Increase Efficiency
- Minimize Stopping Times
- Optimal use of Beam Time
- Increase Precision

Magnetic Field Monitoring

Implementation of New

Measurement Techniques

*

*

*

Removal of Contaminant Ions

- Resolving power ~10⁶
- Can selectively target any known

- Need to identify each contaminant during beam time Non-optimal use of beam time

SWIFT (Stored Waveform Inverse Fourier Transform)

- Fast
- Same excitation scheme for all ions

Developed for analytical chemistry FT-ICR mass spectrometers

S.Guan and A.G.Marshall, IJMS Ion Proc. 5, 157/158 (1996)

SWIFT: Implementation at LEBIT

A.A. Kwiatkowski, PhD Thesis (2011)

Separation of 2 kHz \Rightarrow ~1 keV

Developments to extend measurements to the most exotic isotopes available

Challenges

- Low Production Rates
- Short Lifetimes
- Contamination

FACILITY FOR RARE ISOTOPE BEAMS

Next Generation Gas Cells

Solutions

- Increase Sensitivity
- Increase Efficiency
- Minimize Stopping Times
- Optimal use of Beam Time
- Increase Precision

More Efficient Removal of Contaminant Ions

Magnetic Field Monitoring

*

*

Implementation of New Measurement Techniques

*

B-Field Calibration with Reference Ion

Magnetic field is calibrated with a mass measurement of a reference ion before and after each RI ion measurement

Time

- Valuable beam time is spent on reference ion measurements
- Does not account for non-linear field drifts

B-Field Calibration with Magnetometer

<u>Aim</u>: Use a magnetometer to keep track of magnetic field variations during rare isotope ion measurements

Time

1 qB

 $2\pi m$

 V_{c}

MiniTrap: Miniature Penning Trap as a Magnetometer

Monitor cyclotron frequency to monitor Magnetic Field

$$v_c = \frac{1}{2\pi} \frac{qB}{m} \implies \frac{\Delta v_c}{v_c} = \frac{\Delta B}{B} \implies \text{Use light ions (high v_c)}$$

i.e. H_2^+

Use FT-ICR Image Charge Detection

Proof of Concept

• Improve precision using a smaller trap and lighter masses

- ~ 2000 ions
- FWHM of 5 Hz (at 10⁻⁸ mbar)

MiniTrap: Magnetometer Location

MiniTrap: Penning Trap Electrodes

Orthogonalized Cylindrical Geometry

- open access for e-beam
- efficient pumping
- relatively straight forward to machine
- field imperfections can be minimized
- trap potential independent of tuning

MiniTrap: Status

Components designed, fabricated and assembled Ready for testing in magnet

Developments to extend measurements to the most exotic isotopes available

Challenges

- Low Production Rates
- Short Lifetimes
- Contamination

Next Generation Gas Cells

Solutions

- Increase Sensitivity
- Increase Efficiency
- Minimize Stopping Times
- Optimal use of Beam Time
- Increase Precision

More Efficient Removal of Contaminant Ions

Magnetic Field Monitoring

*

*

*

Implementation of New Measurement Techniques

Development of New Measurement Techniques

Mass measurements on isotopes with very low production rates

TOF Techniques requires ~100s of ions
Becomes difficult for production rates of 1 ion/hr or less

Alternative Approach: FT-ICR image charge detection

Also being pursued at TRIGA-TRAP and SHIP-TRAP

SIPT: Single Ion Penning Trap

• Make use of the FT-ICR Image Charge Detection Technique

• High-Q, low temperature resonant detection circuit

SIPT: Signal to Noise and Precision

$$\frac{S}{N} \sim Nq \left(\frac{\rho}{\rho_0}\right) \sqrt{\frac{\nu_c}{\Delta \nu_c}} \sqrt{\frac{Q}{kTC}} \qquad \begin{array}{c} 100 \text{Sn}^+ (\text{T}_{1/2} = 1 \text{ s}) \Rightarrow \text{S/N} \approx 12 \\ 78 \text{Ni}^+ (\text{T}_{1/2} = 0.1 \text{ s}) \Rightarrow \text{S/N} \approx 4 \end{array} \qquad \begin{array}{c} \text{Q} = 1000 \\ \text{T} = 20 \text{ K} \\ \text{C} = 10 \text{ pF} \\ \rho/\rho_0 = 0.5 \end{array}$$

Analysis of FFT of simulated time domain signal + noise

SIPT: Status

- NSF Major Research Instrumentation Grant (Sep. 2011)
- Additional 7 T Superconducting Solenoid Magnet

Summary

- Over 30 rare isotopes measured with LEBIT 2005 2009
- LEBIT relocated to new stopped beam area
- Double- β -decay Q-values of ⁴⁸Ca, ⁸²Se, ⁷⁸Kr measured with LEBIT-II
- Radioactive beam expected Spring 2013
- SWIFT implemented
- Magnetic field monitoring with MiniTrap ready for testing
- Single Ion Penning Trap project initiated

LEBIT team:

B.R. Barquest, G. Bollen, M. Brodeur,S.E. Bustabad, A. Gehring, D.L. Lincoln,D.J. Morrissey, M. Redshaw, S. Novario,R. Ringle, S. Schwarz, A. Valderez

LEBIT alumni:

C. Bachelet, M. Block, C.M. Campbell,M. Facina, R. Ferrer, C.M. Folden III,C. Guenaut, A.A. Kwiatkowski,G.K. Pang, A.M. Prinke, J. Savory,P. Schury, T. Sun

Thanks for listening!

CMU Trap

Removal of Contaminant lons Before the Penning Trap

• Beam from gas cell contains ions of a single m/q ratio

Removal of Contaminant lons Before the Penning Trap

