RIB Physics with Heavy-Ion Storage Rings

Yuri A. Litvinov

16th International Conference on Electromagnetic Isotope Separators and Techniques Related to their Applications Matsue, Japan, 2-7 December 2012

Physics at Storage Rings

Single-particle sensitivity Broad-band measurements High atomic charge states High resolving power Long storage times Very short lifetimes

Direct mass measurements of exotic nuclei

Radioactive decay of highly-charged ions Charge radii measurements [DR, scattering]

Experiments with polarized beams

Experiments with isomeric beams [DR, reactions]

Nuclear magnetic moments [DR]

Astrophysical reactions [(p,g), (a,g) ...]

In-ring nuclear reactions

Physics at Storage Rings

Direct Mass Measurements on the Chart of the Nuclides

TRAPS \rightarrow S. Kreim, S.Nagy, M. Block, A. Kwiatkowski, D. Rodriguez, V. Kolhinen M. Redshaw MR-TOF \rightarrow S. Kreim, P. Schury, T. Dickel, J. Aoki

Secondary Beams of Short-Lived Nuclei

Experimental Storage Ring ESR

HELMHOLTZ GEMEINSCHAFT B. Franzke, NIM B 24/25 (1987) 18

F. Nolden et al., NIM B 532 (2004) 329 *M.* Steck et al., NIM B 532 (2004) 357

Heavy Ion Research Facility in Lanzhou (HIRFL)

Experimental Cooler Storage Ring CSRe

CSR实验环闭环

Isochronous Mass Spectrometry

Mass Measurements of ⁷⁸Kr Projectile Fragments New masses of ⁶³Ge, ⁶⁵As, ⁶⁷Se, and ⁷¹Kr

NUCLEAR ASTROPHYSICS

Star bursts pinned down

One of the main uncertainties in the burn-up of X-ray bursts from neutron stars has been removed with the weighing of a key nucleus, 65 As, at a new ion storage ring.

NATURE PHYSICS | VOL 7 | APRIL 2011 | www.nature.com/naturephysics

BRENNPUNKT

Kein Halten am Wartepunkt

Hochpräzise Massenmessungen erklären die Kernreaktionen bei Ausbrüchen von Röntgenstrahlung. Physik Journal 10 (2011) Nr. 6

ernationales Büro

80-90% of the reaction flow passes through ⁶⁴Ge via proton capture reactions **Light curve shape of Type I x-ray burst**

X.L. Tu, et al., Phys. Rev. Lett. 106 (2011) 112501

Mass Measurements of ⁵⁸Ni Projectile Fragments New masses of ⁴³V, ⁴⁵Cr, ⁴⁷Mn, ⁴⁹Fe, ⁵¹Co, ⁵³Ni, and ⁵⁵Cu

Isobaric Multiplet Mass Equation

C

$$ME(A, T, T_z) = a(A, T) + b(A, T)T_z + c(A, T)T_z^2$$

onales Büro

Y.H. Zhang et al., Phys. Rev. Lett. 109 (2012) 102501

 dT_{z}^{3} ?

SLIDE REMOVED

SLIDE REMOVED

Future Improvements

Yu. Litvinov and H.S. Xu, Nucl. Phys. News. 21:2 (2011) 13--7

FAIR - Facility for Antiproton and Ion Research

ILIMA: Masses and Halflives

New Resonant Schottky Cavity

The signal-to-noise ratio is improved by a factor of about 100

F. Nolden et a., Nucl. Instr. Meth. A659 (2011) 69--77

Three Parent He-Like ¹⁴²Pm lons

SLIDE REMOVED

E105: EXL @ ESR

Experimental setup for E105 at ESR

SLIDE REMOVED

Capture reactions for astrophysics

ESR: ⁹⁶Ru(p,©)⁹⁷Rh at 10 MeV/u

ESR: ⁹⁶Ru(p,©)⁹⁷Rh at 10 MeV/u

- Measurements directly in the Gamow window of the p-process
- Applicable to radioactive beams
- Clean experimental conditions

 $\sigma_{(p,\gamma)} = 3.6(5) \cdot 10^{-3} b$

Q. Zhong et al., J. Phys. Conf. Series 202 (2010) 012011 R. Reifarth et al., GSI Experimental Proposal

CRYRING@ESR

Study Group

Norbert Angert Angela Bräuning-Demian Hakan Danared Wolfgang Enders Mats Engström Bernhard Franzke Anders Källberg Oliver Kester Michael Lestinsky Yuri Litvinov Markus Steck Thomas Stöhlker

CRYRING@ESR: Highly-Charged lons at Low Energies

Spectroscopy for tests of QED

- High-precision x-ray spectroscopy
 - 1s-Lamb-Shift
 - Two-Electron-QED
- Recoil ion momentum spectroscopy
 - Highly-excited stated
- Laser spectroscopy
- Recombination spectroscopy with high resolution

Atomic collisions

- Sub-femtosecond correlated dynamics
- Unexplored regime: strong perturbation Q/v

Nuclear Physics at low-energies

- exotic nuclear decay modes
- astrophysical reactions
- Transfer reactions at Coulomb barrier

Features@Cryring

- Low-energy and electron cooled beams
- Electron cooling with adiabatic expansion
- High-luminosity for in-ring experiments
- Very fast deceleration 7 T/s
- Internal jet and electron target
- Slow extraction

CRYRING@ESR

Physics book: CRYRING@ESR

CRYRING Physics Book

B. Aurand,? V. Bagnoud,¹ H. Beyer,¹ S. Bishop,^a C. J. Bostock,² C. Brandau,^{b,c}
A. Bräuning-Demian,¹ I. Bray,² T. Davinson,^d P. Egelhof,¹ M. Engström,ⁿ C. Enss,^s
N. Ferreira,^f D. Fischer,^f A. Fleischmann,^s E. Förster,^{i,j} S. Fritzsche,^{1,c,q,r} R. Geithner,ⁱ
J. Goullon,^f R. Grisenti,¹ A. Gumberidze,^{b,c} S. Hagmann,¹ M. Heil,¹ A. Heinz,^e R. Hubele,^f
P. Indelicato,^t A. Källberg,ⁿ C. Kozhuharov,¹ T. Kühl,¹ M. Lestinsky,¹ D. Liesen,¹
Yu. A. Litvinov,^{1,f} R. Märtin,^j R. Moshammer,^f A. Müller,^g S. Namba,³ P. Neumeyer,^b
T. Nilsson,^e G. Paulus,^{i,j} R. Reifarth,^{1,h} R. Reuschl,^{b,c} S. Schippers,^g H. Schmidt,ⁿ R. Schuch,ⁿ
M. Schulz,^{p,h} V. Shabaev,[?] A. Simonsson,ⁿ J. Sjöholm,ⁿ Ö. Skeppstedt,ⁿ K. Sonnabend,^h
U. Spillmann,¹ K. Stiebing,^h Th. Stöhlker,^{1,i,j} A. Surzhykov,^g E. Träbert,^k M. Trassinelli,^u
S. Trotsenko,^j I. Uschmann,^{i,j} P. M. Walker,^{l,m} G. Weber,^{1,j} D. F. A. Winters,¹ P. J. Woods,^d
H. Y. Zhao,[?] et al.

This text is an an early editing stage and is not authorized by the respective coauthors!

Editors:

M. Lestinsky et al.

Atomic Physics Division GSI Helmholtzzentrum für Schwerionenforschung D-64291 Darmstadt

October 23, 2012

\$Revision: 1.9 \$ \$Date: 2012-08-09 12:52:22 \$

Presently: 63 Scientists from 24 Institutions in 10 Countries

More contributions are expected

New contributions are welcome

TSR @ ISOLDE

- Half-life measurements of ⁷Be in different atomic charge states
- Capture reactions for astrophysical p-process
- Nuclear structure through transfer reactions
- Long-lived isomeric states
- Atomic effects on nuclear half-lives
- Nuclear effects on atomic decay rates
- Di-electronic recombination on exotic nuclei
- Neutrino physics; Tests for the neutrino beam project
- Purification of secondary beams from contaminants

TDR positively evaluated b

→ R. Catherall

The fate of ⁷Be in the Sun

C. Rolfs et al., suggestion for an ESR proposal, ~2003 C. Rolfs, W. Rodney, Cauldrons in the Cosmos, 1988

TSR@ISOLDE will be the best place to perform such experiments!

The High Energy Storage Ring HESR

SPARC Experiments at the HESR:

A Feasibility Study

Thomas Stöhlker^{1,2,3}, Reinhold Schuch⁴, Siegbert Hagmann^{1,5}, Yuri A. Litvinov^{1,2} for the SPARC Collaboration^{*} Christina Dimopoulou¹, Alexei Dolinskii¹, & Markus Steck¹

SLIDE REMOVED

1913 - J. Thompson, Discovery of Isotopes (Nobel prize 1906)

- Special Issue of Int. J. Mass Spectr. "Birth of Mass Spectrometry"
- DPG Symposium "100 Years of Mass Spectrometry", Hanover, 2013
- 513. WE-Heraeus Seminar: "Astrophysics with Ion-Storage Rings", January 2013
- 530. WE-Heraeus Seminar on "Nuclear Masses and Nucleosynthesis", April 2013
- New Atomic Mass Evaluation (AME2012) is to appear in 2013 December 2012

Many-many thanks to all my colleagues from all over the world !!!

