

Hunting for mysterious ultra-low energy isomer of Thorium-229 - to realize ultimate "nuclear clock"-

Koji YOSHIMURA RIIS, Okayama University

2018.5.22. RIKEN RIBF Nuclear Physics Seminar

Research Institute for Interdisciplinary Science Quantum Universe Division

Particle Physics/ Cosmology(5) : M. Yoshimura, K. Yoshimura, N. Sasao, T. Masuda, T. Hiraki Nuclear Physics(1) : H. Yoshimi Quantum Electronis/ Atomic Physics(4) : S. Uetake, H. Hara, K. Imamura, Y. Imai Quantum Chemistry(1): Y. Miyamoto Students (10)

Pursue Fundamental Physics using various field of knowledge

Outline

- Introduction
- · History of hunting Th-229 Isomer
- A new method of Th-229 search (SPring-8 Experiment)
- · Recent result
- Future prospect

Introduction

¹Based upon ¹²C. () indicates the mass number of the longest-lived isotope

For a description of the data, visit physics.nist.gov/data

NIST SP 966 (September 2010)

Neptunium Series

Th-229 level diagram

Ground State Isomer State

Th-229 level diagram

Application of Th-229m Impact of eV-order excitation level

eV-older excitation level

Experimental methods using MW, Laser, Spectroscopy, Cooling, BEC, Trap

Coherent

ex.: Atomic clock (Lattice, ion) 10⁻¹⁸

keV, MeV excitation level

Accelerator based

Nuclear Clock <10⁻¹⁹

Shielded by electrons Insensitive to external field

Laser excitation

Three components of Clock

Shortt−Synchronome clock 1920 ~ 1930, precision 10⁻¹⁰

Development of next generation frequency Standard MW to Optical

Why is precise clock needed?

- Communication speed
- Precision of GPS
 - In Futre, 1 μ m precision could be achived.
- Gravitational sensor
 - General relativity 10⁻¹⁸ ~ 1cm resolution
 - Exploration of underground resources
- Fundamental Physics
 - Temporal variation of physical constants
 - Space probe (Darkmatter, Gravitational wave …)

Fundamental Physics with precision clock

- Temporal variation of Physics constants
 - Some expanding universe model suggests possible variation of the fundamental
 - Yb atomic clock

$$\frac{\alpha}{\alpha} = (-2.0 \pm 2.0) \times 10^{-17} / \text{yr.}$$

N. Huntemann et al., *Phys. Rev. Lett.* **113**, 210802 (2014).

Sensitivity with Th-229 is improved by 10⁵~10⁶

V. V. Flambaum, *Phys. Rev. Lett.* **97**, 092502 (2006).

Topological defect dark matter

A. Derevianko and M. Pospelov, Nat. Phys. 10, 933 (2014)

Thorium clock

Ion trap (Kuzmich Group, Peak Group)

Trap Th³⁺, Th⁺ in Paul trap Single-ion can be laser cooled and detected Electron bridge process

Crystal (Hudson Group, Scheme Group)

Th doped UV transparent crystal Th:LiCAF (Hudson Group, USA) Th:CaF₂ (Schumm Group, AU) Solid state nuclear clock Crystal effect

J. Phys.:Condens. Mat. 21, 325403 (2009) J. Phys.: Condens. Matter 26 (2014) 105402 (9pp)

History of hunting Th-229m isomer

Indirect Method

Signal Disappear in Vacuum Utter et al., PRL 82, 505 (1999) Shaw et al, PRL82, 1109 (1999)

"Nuclear clock" revived Th-229

EUROPHYSICS LETTERS

Europhys. Lett., **61** (2), pp. 181–186 (2003)

Nuclear laser spectroscopy of the 3.5 eV transition in Th-229

E. PEIK(*) and CHR. TAMM

Physikalisch-Technische Bundesanstalt - Bundesallee 100 38116 Braunschweig, Germany

(received 17 June 2002; accepted in final form 11 November 2002)

15 January 2003

Indirect method

Indirect method

Direct method

VUV light source

- J. Jeet et al., PRL 114, 253001 (2015) E=7.29 - 8.86 eV at ALS
- A. Yamaguchi et al., New J. Phys. 17 (2015) 053053 E=3.54 - 9.54 eV at MLS
- S. Stellmer et al., arXiv 1803.09294 E=7.5- 10 eV at MLS Life ~ 1 sec

E=6.3~18.3 eV

Physics World 2016 Breakthrough of the Year 3rd Place

Direct method

VUV light source

- J. Jeet et al., PRL 114, 253001 (2015) E=7.29 - 8.86 eV at ALS
- A. Yamaguchi et al., New J. Phys. 17 (2015) 053053 E=3.54 - 9.54 eV at MLS
- S. Stellmer et al., arXiv 1803.09294 E=7.5- 10 eV at MLS Life ~ 1 sec

E=6.3~18.3 eV

Physics World 2016 Breakthrough of the Year 3rd Place

No VUV signal was observed yet!

A new method using intense X-ray source

1 Excite Definitely using the known level

- 2 Confirmation Using NRS signal
- ③ Measure **VUV measurement**

Originally proposed in Tkalya et al., PRC 61, 064308, 2000

A new method using intense X-ray source

Nuclear Resonant Scattering

Excite Definitely using the known level

- 2 Confirmation Using NRS signal
- ③ Measure **VUV measurement**

Originally proposed in Tkalya et al., PRC 61, 064308, 2000

Nuclear Resonant Scattering (NRS)

Baruch De Spinoza Last part of "Ethica"

Sed omnia praeclara tam difficilia, quam rara sunt.

But all things excellent are as difficult as they are rare.

しかし、すべて高貴なものは稀であるとともに困難である

²⁶ Inspired by T. Komatsubara (Rare K-decay)

Th collaboration

- Okayama University
 - S.Okubo, H.Hara, T.Hiraki, T. Masuda, Y.Miyamoto, K.Okai,
 N.Sasao, S. Uetake, A.Yoshimi, K.Yoshimura, M.Yoshimura
- Riken
 - A.Yamaguchi, H. Haba, Yokokita
- Osaka University
 - Y.Kasamatsu, Y.Yasuda, Y.Shigekawa
- Tohoku University IMR
 - K.Konashi, M.Watanabe
- SPring-8
 - Y.Yoda, K. Tamasaku
- Kyoto University
 - M.Seto, K.Kitao, Y.Kobayashi, R.Masuda
- TU Wien
 - T. Schumm, S.Stellmer

SPring-8 Experiment

SPring-8 Experiment

	Bu	nch mode	203 bunches
SPring-8	Bun	ch interva	23.6 nsec
or ring o	Ph	oton flux	4 x 10 ¹³ photon/s
	Li	ne width	4 eV
	Pu	Ilse width	~35 PS
BL09			
	Monoch	ro	Experimental
	Meter		Hutch

SPring-8 Experiment

Thorium Target production Precipitation method

Osaka Univ /Tohoku Univ (Kasamatsu, Yasuda, Shigekawa, Konashi, Watanabe)

Fast X-ray detection system

T. Masuda et al., REVIEW OF SCIENTIFIC INSTRUMENTS 88, 063105 (2017)

NRS observation (Hg-201 26 keV)

Preliminary search for Th NRS 2016.Dec

Energy selection to reduce radioactive background

Recent Result

Higher density target

- \$\$\\$1.5\$→\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$0.5\$\$
 - x10 sensitivity
- Electrodeposition method (cf. Precipitation method)

RIken (Haba, Yokokita, Yamaguchi), Osaka Univ (Kasamatsu, Yasuda, Shigekawa)

New 9ch APD array

9ch \u00f60.5 APD (10um)

Distance between APD array and target Acceptance x10 $3.5 \text{ mm} \rightarrow 2 \text{ mm}$

New X-ray focusing system - compound refractive lens -

- Installed in BL09XU in Oct. 2017
- 2D focusing for 29.2 keV X-ray
 - Aperture 1.5 mm x 1.5 mm
 - Transmission efficiency 53%
 - Beam size at focal point \sim 50µm (V) ×200µm (H)
 - Focal length 14 m

Karlsruhe Institute of Technology (KIT) Institute of Microstructure Technology (IMT)

microworks GmbH

Progress over three years

	2015/2	2015/12	2016/9	2017/10 (New)
Detector	14.5mmφ MCP	14.5mm¢ MCP	0.5mmφ APD 4ch	0.5mmø APD 9ch
Th target	$0.06 \mu \text{g/mm2} \times 5 \text{mm} \phi$	1.7 μg/mm2 × 1.5mmφ	1.7 μ g/mm2 × 1.5mm ϕ	3.0 μg/mm2 × 0.5mmφ
Beam size (FWHM)	~1×1 mm2	1.0×0.8 mm2	0.2×0.1 mm2	0.2×0.05 mm2
count rate	1.3 kHz	300-400 kHz	22 kHz	310 kHz

Last Spring-8 beam time 2018 April

No signal at all 2018 April

ROI 0.5 ns ~ 1.0 ns

2.5 days scan

Why not observed?

- Search energy range
 - NRS resonance would be outside the range?
- Energy precision
 - Energy of Monochrometer may be drifted during scan.
- Lifetime
 - Life time might be too short to detect.

For next challenge

- In stu Energy calibration
 - Bond method
 - W.L.Bond Acta Cryst. (1960) 13, 814
 - Angular measurement
 - Δθ~0.1" if ΔE~10 meV

Self calibrated rotary encoder (SelfA AIST)

T. Watanabe Journal of Japan Society for Precision Engineering Vol 82, No9, PP 792-796 2016

- Lifetime measurement
 - Lifetime of 2nd Excitation level
 - Critical parameters

Lifetime measurement 2017 summer, Oarai center, Tohoku Univ

R13449-100-10(PhotoCathod:SBA)

Lifetime measurement 2017 summer, Oarai center, Tohoku Univ

R13449-100-10(PhotoCathod:SBA)

Future prospect

To observer VUV signal

- Ellipsoidal mirror system is developed
- Th:CaF2 crystal povided by TU Wien
- VUV emitted from the crystal is viewed by solar-blind

Optical system check (2015)

Measurement of VUV wavelength

- VUV spectrometer with cooled CCD camera.
- Wavelength could be determined by 0.2 nm (0.01 eV)

By Simon Stellmer

Excitation, Detection using IC electron

Laser excitation with magnetic bottle

Lars von der Wense et al., PRL 119 132503 (2017)

Energy measurement of IC electron

S. Stellmer et al., arXiv 1805.04929v1

Excitation in laser plasma

Inverse IC using Laser ablation

Inverse IC using Laser ablation

P.V.Borisyuk et al., arXiv 1804.00299v1

Eis = $7.1(\pm 0.1-0.2)$ eV T1/2 = 1880 ± 170 s

Spectroscopy

Summary

- New method using high intense x-ray source has been developed.
- We are now ready for full search of Th-229 29.2 keV state.
- If we could observe NRS signal of 29.2 keV, then we start search for VUV photon using Isomer state.