Quantifying and modelling epithelial morphogenesis

Kaoru Sugimura¹, Philippe Marcq², Shuji Ishihara³ (1: WPI-iCeMS, Kyoto Univ., 2: Inst. Curie, 3: Univ. Tokyo)

Ascidian neural tube closure: Hashimoto et al. *Dev. Cell*, 2015 *Drosophila* germband elongation: de Matos Simões et al. *J Cell Biol.*, 2014 *Drosophila* pupal wing morphogenesis.

Mechanics of morphogenesis

the biological process to shape a tissue

Mechanics of morphogenesis

the biological process to shape a tissue

How are mechanics and genetics integrated to shape an animal body?

Outline

- 0. Questions
- 1. Quantifying epithelial morphogenesis
- 2. Modelling epithelial morphogenesis
- 3. Future research plans

0. Questions:

Bridging cellular and tissue scales

$\mathsf{Molecular}/\mathsf{Cell} \to \mathsf{Tissue}$

$Molecular/Cell \leftarrow Tissue$

Our questions: Multi-scale integration in a developing tissue

How do morphogenetic processes of each individual cell collectively lead to the development of a tissue with its correct shape and size?

How are cellular-level mechanical determinants, such as cell-junction tension and cell area elasticity, related to tissue rheology?

Tissue (2 x 10⁴ cells)

Our questions: Multi-scale integration in a developing tissue

How do morphogenetic processes of each individual cell collectively lead to the development of a tissue with its correct shape and size?

How are cellular-level mechanical determinants, such as cell-junction tension and cell area elasticity, related to tissue rheology?

Cell (1 cell)

Tissue (2 x 10⁴ cells)

1. Quantifying epithelial morphogenesis

Inverse problem between forces and shapes

Inverse problem between forces and shapes

Bayesian force/stress inference

Ishihara and Sugimura. *J. Theor. Biol.* (2012); Sugimura and Ishihara. *Development* (2013); Ishihara et al. *EPJE* (2013); Sugimura et al. *IEEE EMBC* (2013)

In silico and in vivo Validation

Laser ablationMyosin-II distributionRobust against the image processing error

Photo elasticity Temporal smoothness

Coarse-grained measurement of stress

First to quantify space-time maps of stresses in a whole tissue Stress anisotropy in the wing

Coarse-grained measurements of kinematics (deformation)

Unified quantification of stress and deformation

2. Modelling epithelial morphogenesis

Mechanical models for epithelial tissue

- Cell shape is explicitly represented
- Cell geometry is determined by minimizing energy function

$$V = \sum_{\substack{cell \ 2}} \frac{K}{2} (A_i - A_0)^2 + \sum_{\substack{membrane \ 2}} \gamma_0 L_j + \sum_{\substack{cell \ 2}} \frac{\kappa_0}{2} \ell_i^2$$

cell area elasticity linear and elastic tension of junctions

- Useful for including experimental data obtained at cellular level, such as the laser ablation of cell junctions and subcellular distribution of proteins

- Relationship between cell morphogenetic processes and cell mechanics and tissue scale deformation and rheology are not directly tractable

Mechanical models for epithelial tissue

- in-depth analysis of tissue rheology

- do not include the information of the cellular structure by construction

Continous model

Mechanical models for epithelial tissue

Continuum model with DOFs representing cell shape and cell rearrangement

Comparable with experimental data (stress tensor, texture tensor)

Tissue as soft matters : material with internal DoF Similar, but different structures and kinematics

Tissue

Liquid crystal

Polymer melts

New continuum model for epithelial mechanics

Ishihara, Marcq, Sugimura. Phys. Rev. E (2017).

New continuum model retains essential features of Cell vertex model (CVM)

Comparison of macroscopic stress expressions Ones calculated from coarse-grained cellular shape tensor M (symbols) the true ones obtained using the CVM simulations (solid lines)

 \diamondsuit We also recovered two instabilities described for the CVM.

Application1: relaxation upon tissue stretching

(b)

$$\dot{c} + \eta^{-1} \Gamma(c) \sinh(c) = (1 - v_1) \partial_x v_x$$

relaxation time scale:

$$\tau = \eta \frac{2\pi S_0}{\pi \gamma_0 + 4\pi^2 \kappa_0 S_0}$$

So : cell size yo, Ko: cell tension parameter of Cell Vertex Model

 $V = \sum_{call} \frac{K}{2} (A_i - A_0)^2 + \sum_{membrane} \gamma_0 L_j + \sum_{call} \frac{\kappa_0}{2} \ell_i^2$

Application2: active contraction-elongation (CE)

Kinetics: Thermodynamic formalism (c.f. active gel theory in Kuruse et al. PRL, 2005)

Application2: active contraction-elongation (CE)

Our model predicts a mechanism for contraction-elongation, whereby tissue flows perpendicularly to the axis of cell elongation.

3. Future research plans

Sugimura group, WPI-iCeMS, Kyoto Univ.

Collaborators

Univ. Paris 7

Yukitaka Ishimoto Akita pref. Univ.

Univ. Tokyo

Inst. Curie

Philippe Marcq

Kyoto stock center, Bloomington, VDRC, NIG-Fly, DGRC Roger Karess, Yang Hong CeMI, WPI-iCeMS, Kyoto University JST PRESTO , JSPS KAKENHI, AMED PRIME