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Ascidian neural tube closure: Hashimoto et al. Dev. Cell, 2015
Drosophila germband elongation: de Matos Simdes et al. J Cell Biol, 2014

Drosophila pupal wing morphogenesis.




Mechanics of morphogenesis

the biological process to shape a tissue

Molecular forces

Deformation of
cells/tissues
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Body shape

Xenopus embryogenesis (David Shook)

Mechanics of morphogenesis

the biological process to shape a tissue

Xenopus embryogenesis (David Shook)

» How are mechanics and genetics
integrated to shape an animal body?
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0. Questions:

Bridging cellular and tissue scales
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Tissue rheology
Tissue stress

g

Molecular/Cell < Tissue

Molecule/Cell

Tissue

Morphogenetic cell process

Tissue deformation/strain

Cell elasticity
Molecular motors

— Sliding actin filaments

Tissue rheology
Tissue stress

uonewJojaqg

ssaJl1g/-doidyosN

uonewJojaqg

ssaJ1g/-doidyos\



Molecular/Cell 2 Tissue
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Our guestions:
Multi-scale integration in a developing tissue

How do morphogenetic processes of each individual cell collectively
lead to the development of a tissue with its correct shape and size?

How are cellular-level mechanical determinants, such as cell-junction
tension and cell area elasticity, related to tissue rheology?

Cell (1 cell) Tissue (2 x 10* cells)
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Coarse-graining

1. Quantifying
epithelial morphogenesis



Our model system:
Drosophila pupal wing epithelium
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3 unknowns, 2 conditions

v Shape

Relative values of forces

Fy/F, Fy/F,



Inverse problem between forces and shapes

Epithelial—tissue

FicosOi+F>cosO:+F3cos03=0
Fisin@:+ F2sin@:+F3sin@3 =0

3 unknowns. 2 conditions # of unknowns > # of conditions
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Relative values of forces

Force balance equations

Relative values of cell junction tension
and difference of cell pressure

Bayesian force/stress inference
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Ishihara and Sugimura. J. Theor. Biol. (2012); Sugimura and Ishihara. Development (201 3);
Ishihara et al. EPJE (2013); Sugimura et al. /EEE EMBC (2013)



/n sifico and /n vivo Validation

In silico In vivo

Numerical data  Laser ablation Myosin-I|
(sghp-sghGFP)
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Coarse-grained measurement of stress
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First to quantify space-time maps of stresses in a whole tissue
Stress anisotropy in the wing



Coarse-grained measurements of
kinematics (deformation)
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Yohanns Bellaiche Boris Guirao

G = D+R+S+A
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Unified quantification of stress and deformation
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2. Modelling
epithelial morphogenesis

Mechanical models for epithelial tissue

Discrete model
(e.g., CVM)
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- Cell shape is explicitly represented

- Cell geometry is determined by minimizing energy
function

V= ZE(Ai —A)+ S 7l +2%ff

cell 2 membrane cell

cell area elasticity linear and elastic tension of junctions

- Useful for including experimental data obtained at

cellular level, such as the laser ablation of cell junctions
and subcellular distribution of proteins

- Relationship between cell morphogenetic processes

and cell mechanics and tissue scale deformation and
rheology are not directly tractable



Mechanical models for epithelial tissue

Continous model
E& - in-depth analysis of tissue rheology

- do not include the information of the cellular —
structure by construction

Rheology

Mechanical models for epithelial tissue

Discrete model

(e.g., CVM) New continuous model Continous model
Rheology —Ii:’;} Rheology
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Continuum model with DOFs
representing cell shape and
cell rearrangement

Comparable with experimental data
(stress tensor, texture tensor)

Shuji Ishihara Philippe Marcq



Tissue as soft matters : material with internal DoF
Similar, but different structures and kinematics

Tissue

Liquid crystal

Polymer melts
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New continuum model for epithelial mechanics

Discrete model
(e.g., CVM)

V= 2 (A4 -4,) Z y”L+2 Wz

cell
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Approximate a cell
by an ellipse M

M : cell shape tensor
M= SS
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Energy as a function of M
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Vv =

tissue
deformation

= (Vv — D,

Tlili et al. 2015

cell shape change

Kinematics for cell deformation

Decomposition of deformation rate

Q+D_+D,

rea

Kinematic for cellular shape M
(co-deformational to deformation rate)

M + M (Vv — D,

cell
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Kinetics: Thermodynamic formalism

Entropy production rate

Is=0,:D+0,:D,
Constitutive relationship

Gp = ZSSD_ Zsro-

D}" = ZVSD + era

Ishihara, Marcq, Sugimura. Aays. Rev. £ (2017).



New continuum model retains essential features of
Cell vertex model (CVM)

<> Comparison of macroscopic stress expressions
Ones calculated from coarse-grained cellular shape tensor M (symboals)

the true ones obtained using the CVM simulations (solid lines)
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< We also recovered two instabilities described for the CVM.

Application1: relaxation upon tissue stretching

axial stretch

of v

cell rearrangement
cell shape relaxation
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Application2: active contraction-elongation (CE)
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Kinetics: Thermodynamic formalism (c . active gel theory in Kuruse et al. PRL, 2005)

Entropy production rate ) ) .
Coupling reaction that supplies energy to the system

Ts=0 :D+0oc :D + rdu »: the reaction rate
p e r

Au : difference of chemical potential by the reaction

Constitutive relationship
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Application2: active contraction-elongation (CE)

Constriction force

by myosin motors %L \
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Our model predicts a mechanism for contraction-elongation,
whereby tissue flows perpendicularly to the axis of cell elongation.



Deform
ation
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research plans
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