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A challenge for neurons: how to effectively 
distribute function proteins in time and 
space?  
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To see, analyze, mimic RNA regulation	




We have learnt 4 cellular strategies : 
 
 
 

1.  RNA signals for transport; 

2.  Spatially restricted translation; 

3.  High mobility; 

4.  Chemical modification 
 



Strategy 1: To use local structural elements to 
target RNA into dendrites and synapse	
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Localization elements in UTRs	
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Local secondary structures are important for RNA 
localization	
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We have learnt 4 cellular strategies : 
 
 
 

1.  RNA signals for transport; 

2.  Spatially restricted translation; 

3.  High mobility; 

4.  Chemical modification 
 



Strategy 2: Spatially restrict protein 
synthesis at synapses in response to 
specific stimuli	
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We have learnt 4 cellular strategies : 
 
 

1.  RNA signals for transport; 

2.  Spatially restricted translation; 

3.  High mobility; 

4.  Chemical modification 
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We have learnt 4 cellular strategies : 
 
 

1.  RNA signals for transport; 

2.  Spatially restricted translation; 

3.  High mobility; 

4.  Chemical modification 
 



(Motorin and Helm, 2011; Fu et al., 2014) 

>150	
  natural	
  RNA	
  modificaIons 

More flexibility to our 
genetic program 

m6A reader proteins and effector functions
The discoveries of m6A RNA demethylation and 
demethylases validate our hypothesis that the ubiqui-
tous m6A modification is dynamic and reversible, which 
is similar to epigenetic DNA and histone modifications. 
The noticeable phenotypes of both FTO and Alkbh5 
mutations in humans and mice strongly indicate the 
functional importance of this reversible m6A methyla-
tion on RNA. For the m6A group to have a biological 
function, it needs to be recognized through reading 
by specific proteins. This process could resemble the 
roles of proteins that read 5-methylcytosine (m5C; also 
known as 5mC) in DNA, or methylated or acetylated 
amino acid residues of histones in order to exhibit 
the biological function associated with the modifica-
tions and to enable reversible tuning. We can envision 
three types of selective reading mechanisms for m6A on 
RNA: first, a reader protein could selectively bind to the 

m6A-containing RNA; second, the presence of m6A in 
a specific sequence could weaken the cognate binding 
interaction of an RNA-binding protein; and third, the 
presence of m6A may change the secondary structures 
of RNA and therefore alter protein–RNA interactions.

YTHDF2 preferentially recognizes m6A-containing 
mRNA and regulates both mRNA stability and localiza-
tion. Using pulldown experiments, we have identified 
three cytoplasmic proteins of the YTH domain fam-
ily, YTHDF1–3, as selective m6A-binding proteins in 
mammalian cell extracts17,76 (FIG. 4a). The YTH domain 
family consists of abundant RNA-binding proteins that 
previously had no clear function assigned. We con-
firmed that mammalian YTHDF proteins preferentially 
bind to RNA that contains m6A at the G[G>A]m6ACU 
consensus sequence relative to unmethylated RNA of 
the same sequence76. Additionally, RNA probes that 

Box 1 | RNA modifications
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Cellular RNA species contain more than 100 chemical modifications with 

diverse properties. Chemical modifications of RNA can occur on the N1, 

N3, N7 and C8 atoms in both adenine and guanine; C2 and N6 in adenine; 

N2 and O6 in guanine; N1, O2, N3 and C5 in cytosine and uracil; N4 in 

cytosine and O4 in uracil; as well as on 2ʹ-O of the ribose backbone and the 

OH group of the phosphate backbone (see the figure, part a). These 

modifications can modulate hydrophobicity, steric and electrostatic 

effects, and hydrogen-bonding abilities of RNA bases and backbones. 

Methylation or other forms of alkylation on nitrogen or oxygen atoms can 

be removed through either an oxidative or a nucleophilic substitution 

mechanism. The oxidative demethylation (see the figure, part b) is best 

exemplified by Fe(ii) and α-ketoglutarate-dependent dioxygenase 

enzymes, which use Fe(ii) as a catalytic centre, O
2
 as an oxidant and 

α-ketoglutarate as a cofactor. When the methyl group is linked to  

a heteroatom such as nitrogen or oxygen, the oxidation of C–H to a 

hemiaminal or hemiacetal intermediate destabilizes the C–N or C–O  

bond, respectively, which leads to the demethylated product with the 

release of formaldehyde. The hemiaminal intermediate, such as 

N6
-hydroxymethyladenosine (hm

6
A), may undergo further oxidation to 

produce a formamide, such as N6
-formyladenosine (f

6
A), which can 

decompose in water to yield the demethylated product with the release of 

formic acid. The demethylation activity could be modulated by the 

effective concentrations of Fe(ii), O
2
 or α-ketoglutarate. The bimolecular 

nucleophilic substitution (Sn2) mechanism could also be used to remove 

RNA methylation on heteroatoms; however, such a process has yet to be 

shown for RNA demethylation (see the figure, part c).

m
6
A, N6

-methyladenosine; Nu, nucleophile.
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Chemically decorated synaptic transcritome? 

Transcriptome	
 “Epi”transcriptome	




m6A: the most abundant internal 
modification of mRNA in mammals  
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m6A impacts RNA metabolism and function 
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Eight libraries from HOM and SYN 
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Systematic comparison	
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A	
  synapIc	
  m6A	
  epitranscriptome	
  (SME)	
  
4,469	
  methylaIon	
  sites	
  on	
  2,921	
  genes	
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m6A methylation functionally partition 
transcripts at the synapse 
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