Robustness/plasticity of biochemical reaction systems and network topology

Takashi Okada RIKEN iTHEMS

iCeMS-iTHEMS Joint Workshop on Interdisciplinary Biology

Mochizuki A, Fiedler B. JTB (2015), Okada T., Mochizuki A. PRL (2016) Okada T., Mochizuki A. PRE (2017) Okada T., Tsai JC, Mochizuki A arXiv:1711.00250

KEGG database

Enzyme knockdown experiment

Reaction network of central carbon metabolism

Reaction rate functions are not known precisely.

Can we determine system's behaviors from network structure alone??? (without knowledge of reaction rate functions)

OUTLINE

Chemical Reaction systems Dynamics

A. Qualitative response is determined from network structure alone.

$$A \equiv \left(\begin{array}{c} \sum_{i} S_{mi} W_{i}(k_{i}, \bar{x}) = 0\\ \sum_{i} S_{mi} W_{i}(k_{i} + \delta k, \bar{x} + \delta \bar{x}) = 0 \end{array} \right)$$

$$A \equiv \left(\begin{array}{c} J \\ J \\ J_{im} = \frac{\partial W_{i}}{\partial x_{m}} = \begin{cases} + (m \in \text{substrate})\\ 0 (\text{otherwise}) \end{cases} \right) \left(\begin{array}{c} \frac{\partial \bar{x}_{m}}{\partial k_{j}} = -(A^{-1})_{mj} \right) \\ \end{array} \right)$$

$$H = \left(\begin{array}{c} \frac{\partial W_{i}}{\partial x_{m}} = \left(\begin{array}{c} + (m \in \text{substrate})\\ 0 (\text{otherwise}) \end{array} \right) \\ \end{array} \right) \left(\begin{array}{c} \frac{\partial \bar{x}_{m}}{\partial k_{j}} = -(A^{-1})_{mj} \right) \\ \end{array} \right)$$

$$H = \left(\begin{array}{c} \frac{\partial W_{i}}{\partial x_{m}} = \left(\begin{array}{c} + (m \in \text{substrate})\\ 0 (\text{otherwise}) \end{array} \right) \\ \end{array} \right) \\ H = \left(\begin{array}{c} \frac{\partial W_{i}}{\partial k_{j}} = -(A^{-1})_{mj} \right) \\ H = \left(\begin{array}{c} \frac{\partial W_{i}}{\partial k_{j}} = -(A^{-1})_{mj} \right) \\ H = \left(\begin{array}{c} \frac{\partial W_{i}}{\partial k_{j}} = \left(\begin{array}{c} \frac{\partial W_{i}}{\partial k_{j}} = -(A^{-1})_{mj} \right) \\ H = \left(\begin{array}{c} \frac{\partial W_{i}}{\partial k_{j}} = -(A^{-1})_{mj} \right) \\ H = \left(\begin{array}{c} \frac{\partial W_{i}}{\partial k_{j}} = -(A^{-1})_{mj} \\ H = \left(\begin{array}{c} \frac{\partial W_{i}}{\partial k_{j}} = -(A^{-1})_{mj} \\ H = \left(\begin{array}{c} \frac{\partial W_{i}}{\partial k_{j}} = -(A^{-1})_{mj} \\ H = \left(\begin{array}{c} \frac{\partial W_{i}}{\partial k_{j}} = -(A^{-1})_{mj} \\ H = \left(\begin{array}{c} \frac{\partial W_{i}}{\partial k_{j}} = -(A^{-1})_{mj} \\ H = \left(\begin{array}{c} \frac{\partial W_{i}}{\partial k_{j}} = -(A^{-1})_{mj} \\ H = \left(\begin{array}{c} \frac{\partial W_{i}}{\partial k_{j}} = -(A^{-1})_{mj} \\ H = \left(\begin{array}{c} \frac{\partial W_{i}}{\partial k_{j}} = -(A^{-1})_{mj} \\ H = \left(\begin{array}{c} \frac{\partial W_{i}}{\partial k_{j}} = -(A^{-1})_{mj} \\ H = \left(\begin{array}{c} \frac{\partial W_{i}}{\partial k_{j}} = -(A^{-1})_{mj} \\ H = \left(\begin{array}{c} \frac{\partial W_{i}}{\partial k_{j}} = -(A^{-1})_{mj} \\ H = \left(\begin{array}{c} \frac{\partial W_{i}}{\partial k_{j}} = -(A^{-1})_{mj} \\ H = \left(\begin{array}{c} \frac{\partial W_{i}}{\partial k_{j}} = -(A^{-1})_{mj} \\ H = \left(\begin{array}{c} \frac{\partial W_{i}}{\partial k_{j}} = -(A^{-1})_{mj} \\ H = \left(\begin{array}{c} \frac{\partial W_{i}}{\partial k_{j}} = -(A^{-1})_{mj} \\ H = \left(\begin{array}{c} \frac{\partial W_{i}}{\partial k_{j}} = -(A^{-1})_{mj} \\ H = \left(\begin{array}{c} \frac{\partial W_{i}}{\partial k_{j}} = -(A^{-1})_{mj} \\ H = \left(\begin{array}{c} \frac{\partial W_{i}}{\partial k_{j}} = -(A^{-1})_{mj} \\ H = \left(\begin{array}{c} \frac{\partial W_{i}}{\partial k_{j}} = -(A^{-1})_{mj} \\ H = \left(\begin{array}{c} \frac{\partial W_{i}}{\partial k_{j}} = -(A^{-1})_{mj} \\ H = \left(\begin{array}{c} \frac{\partial W_{i}}{\partial k_{j}} = -(A^{-1})_{mj} \\ H = \left(\begin{array}{c} \frac{\partial W_{i}}{\partial k_{j}} = -(A^{-1})_{mj} \\ H = \left(\begin{array}{c} \frac{\partial W_{i}}{\partial k_{j}} = -(A^{-1})_{mj} \\ H = \left(\begin{array}(c} \frac{\partial W_{i}}{\partial k_{j}} = -(A^{-1})_{mj} \\ H = \left(\begin{array}(c} \frac{\partial W_{i}}{\partial k_{j}} = -(A^{-1})_{mj} \\ H = \left(\begin{array}(c}$$

OUTLINE

限局則 (the law of localization)

Okada T. & Mochizuki A. (2016) Phys. Rev. Lett. 117, 048101.

BS corresponds to a square submatrix

 $\chi(\Gamma) \equiv |\mathcal{M}| - |\mathcal{R}| + \# \text{cycle in } \Gamma \stackrel{???}{=} 0$

$$\chi(\Gamma) \equiv \#$$
metabolite $- \#$ reac. $+ \#$ cycle $\stackrel{???}{=} 0$

$$\chi(\Gamma) \equiv \#$$
metabolite $- \#$ reac. $+ \#$ cycle $\stackrel{???}{=} 0$

$$\chi(\Gamma) \equiv \#$$
metabolite $- \#$ reac. $+ \#$ cycle $\stackrel{???}{=} 0$

$$\chi(\Gamma) \equiv \#$$
metabolite - $\#$ reac. + $\#$ cycle $\stackrel{???}{=} 0$

note: There are 17 buffering structures in total.

A hierarchy appears from a nest of buffering structures

A hierarchy appears from a nest of buffering structures

G3P 7

18

Plasticity and Bifurcation Phenomena

Ertugrul M. Ozbudak, et al, Nature, 2004

The concentration of the protein (necessary to utilize the nutrient) change discontinuously.

Bifurcation theory

$$\frac{dx}{dt} = f(x) = -k + x^2$$

$$\int_{0}^{\bar{x}} \int_{k}^{\bar{x}} k J = \frac{\partial f}{\partial x}|_{x=x^*} = 2x^* = \pm 2\sqrt{k}$$

At bifurcation point (k=0), the Jacobian J becomes 0.

In a multivariate case, bif point ⇔ det J =0

$$\begin{aligned} \dot{x} &= f(x, y) \\ \dot{y} &= g(x, y) \end{aligned} \mathbf{J} = \begin{pmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{pmatrix} \Big|_{\vec{x} = \vec{x}^*} \\ \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \end{aligned}$$

$$\det \mathbf{J} = \frac{\partial f}{\partial x} \frac{\partial g}{\partial y} - \frac{\partial f}{\partial y} \frac{\partial g}{\partial x}$$

Bifurcation analysis based on the matrix A

At bif. point, $\det J = 0$

$$\mathbf{A} = \left(\frac{\partial \boldsymbol{r}}{\partial \boldsymbol{x}}\Big|_{\boldsymbol{x}=\boldsymbol{x}^*} \mid \ker S \right) \qquad \qquad \frac{d\mathbf{x}}{dt} := S\mathbf{r}(x) \\ \mathbf{J} := S\frac{\partial \mathbf{r}}{\partial \mathbf{x}}|_{\boldsymbol{x}=\boldsymbol{x}^*}$$

$$\mathbf{A} = \begin{pmatrix} \mathbf{A}_{\Gamma} & \ast \\ \mathbf{A}_{\bar{\Gamma}} & \mathbf{A}_{\bar{\Gamma}} \end{pmatrix} \qquad \det \mathbf{A} = \det \mathbf{A}_{\Gamma} \times \det \mathbf{A}_{\bar{\Gamma}} = 0$$

$$\operatorname{decomposition}$$

 $\overline{\Gamma}$

Γ

Bifurcation analysis of reaction systems based on network structures

Okada T., Tsai JC, Mochizuki A. arXiv:1711.00250

Summary

Mochizuki A, Fiedler B. JTB (2015), Okada T., Mochizuki A. PRL (2016) Okada T., Mochizuki A. PRE (2017)

- Responses and network topology
 - Responses are determined from network topology
 - Buffering structures explain response patterns

- Bifurcation and network topology
 - Det J = Det A

Okada T., Tsai JC, Mochizuki A arXiv:1711.00250