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Perturbed enzyme  

 chemical  

Enzyme	knockdown	experiment	
	

Enzymes	=	proteins	controlling	reaction	rates	(“parameters”).	

Only	some	chemicals	show	nonzero	responses,		the	
other	chemicals	does	not	change	(adaptations).		
	

So	far,	theoretical	understandings	are		
not	sufficient.	

Reaction	rate	functions	are	not	known	precisely.	
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Reaction	network	of	central	carbon	metabolism		



	
Can	we	determine	
system’s	behaviors	

	from	network	structure	alone???	
(without	knowledge	of	reaction	rate	functions)	
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(1)  Responses are determined from network structures 

 
(2) Theorem connecting responses and network topology 

(3) Bifurcation phenomena  



Stoichiometric matrix 
(化学量論行列) 

mass action type Michaelis-Menten type 

E.g.  

Concentration of chemical m  

Rate (速度) of reaction i 

parameter 
(e.g. enzyme)	

example 

stoichiometric matrix 

d

dt

0

@
xA

xB

xC

1

A =

0

@
1 �1 0 0
0 1 1 �1
0 1 �1 0

1

A

0

BB@

W1(k1)
W2(k2, xA)
W3(k3, xC)
W4(k4, xB)
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We do not assume specific kinetics  
because we do not know the actual kinetics in living cells 

Chemical Reaction systems Dynamics 



A.  Qualitative response is determined from network structure alone. 

Q.	How	does	the	steady	state	respond		
to	parameter	perturbation?	

@x̄m

@kj

@x̄m

@kj
= �(A�1)mj

※ The non-zero distribution in A is 
determined from network structure. 

X

i

Smi Wi(ki, x̄) = 0

X

i

Smi Wi(ki + �k, x̄+ �x̄) = 0



Example	of	a	small	network	
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※1. 行列Aのノンゼロ分布はネットワークのみから決定可能 
※2. knockdownは微小変化でなくてもOK 

A. 定性的にはネットワーク構造のみから決定できる 

(before)�

(after)�

flux        の変化 

•  定常状態 (十分時間が経過して時間変化がない状態) 

Q. 定常状態 における代謝物の濃度(　)やフラックス(　 )は 
反応 jの撹乱(knockdown)のもとでどのように変化するか？ 
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ẋA = k1 � k2xA + k4xC

ẋB = k2xA � k3xB

ẋC = k3xB � k4xC � k5xC
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nonzero response to perturbation of reaction 4 should be
limited within Γ4. Actually the response in the 4th col-
umn in (10) is consistent with this prediction. Similarly,
the response to perturbation of reaction 6 should be ex-
plained by Γ5. This prediction is consistent with the
calculation result in the sixth column in (10).

Example 3: The network has 14 buffer-
ing structures, listed in SM. To see the origin
of response hierarchy, we focus on the three
buffering structures colored in FIG. 3; Γ10 =
({C,E,G,H}, {5, 6, 9, 11, 12}) (with λ(Γ10) = −4 +
5 − 1 = 0), Γ11 = ({C,D,E,G,H},{5, 6, 7, 8, 9, 11, 12})
(with λ(Γ11)= −5 + 7 − 2 = 0), and Γ12 =
({C,D,E, F,G,H, I, J}, {5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15})
(with λ(Γ12)= −8 + 11 − 3 = 0). Each of these three
explains the response pattern under perturbation of re-
action 5, 8, and 10 (or 13), respectively, and they satisfy
the inclusion relation, Γ10 ⊂ Γ11 ⊂ Γ12. Accordingly, we
can see from FIG. 3 (Right) that these response patterns
satisfy an inclusion relation.

In this way, we can understand all of the observed pat-
terns from network topology by using the law of local-
ization. In short, the first characteristic, localization, is
understood from existence of buffering structures. The
second property, hierarchy, is understood as the nest of
the buffering structures.

FIG. 4. E. coli network. (Adopted from [1]).

FIG. 5. The response hierarchy of E. coli network.

Finally, as an application to real biological networks,
we examine the carbon metabolism pathway of E. coli.
The carbon metabolism is a major part of energy acqui-
sition process, and the basic structures of the networks
are shared between bacteria and human beings. FIG.
4 shows the network [1], including 28 metabolites and
46 reactions, and FIG . 5 shows the response hierar-
chy (see SM for the detail). Again, the response pat-
terns show the two characteristic features, localization

and hierarchy. The network has 17 buffering structures,
and the existence and the nest of them explain the two
characteristic features perfectly. We mention that some
of the buffering structures, which are of course defined
from network topology, are surprisingly overlapping to
biologically identified sub-circuits, the pentose phosphate
pathway (yellow in FIG. 4, 5), the tricarboxylic acid cy-
cle (blue) and the glycolysis (green). As discussed below,
this correspondence may be understood from an evolu-
tional point of view by considering the advantage of dy-
namical property of buffering structures.
Now, we discuss the biological significances of buffer-

ing structures (and nest of them) in two different levels.
The first discussion is on the physiological importance. A
buffering structure prohibits influence of given perturba-
tion from expanding to the outside, like a “firewall”. In
other words, it is a substructure with robustness emerg-
ing from the network topology. For example, the carbon
metabolism network of E. coli possesses multiple nested
firewalls (FIG. 5), and such systems are expected to be
robust to fluctuations of enzymes in the structures. We
may therefore expect that such topological characteristic
of reaction networks could be the evolutionary origin of
homeostasis of biological systems. If a set of chemical
reactions had satisfied the condition of buffering struc-
ture by chance in the evolutionarily early time, then the
reaction set would be positively selected as an advanta-
geous circuit in evolution. We then expect that buffering
structures in existing biological networks today might be
generated and selected in such ways.
The second discussion is about the practical advan-

tage of the law of localization in experimental biology.
Our knowledge of biochemical networks is considered in-
complete. For example, it might include unidentified re-
actions or regulations. Generally, the lack of precise net-
work information would be a serious obstacle in studying
dynamical behaviors as a whole system. However, the
condition for buffering structure depends on the local net-
work structure only, which implies that we can study the
sensitivity of the system only from local information on
the network.

FIG. 6. A strategy toward elucidating a true network.

By taking advantage of this property, we can deter-
mine a “true” network by combining experimental proce-
dures in the following way (see FIG. 6). First, we predict
candidates of buffering structures from a database net-
work. Then we verify experimentally whether the candi-
date structures actually have the property of localization.

Bacteria metabolism (glycolysis&PPP&TCA cycle) 
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(1)  Responses are determined from network structures 

 
(2) Theorem connecting responses and network topology 

(3) Bifurcation phenomena  



限局則 (the law of localization) 
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BS corresponds to a square submatrix	
|M|+#(cycles)

|R|

・Take a subnetwork           (chemicals        , reactions       ) 
　　　includes all reaction edges emanating from     .  

・Any parameters in a BS do not influence chemicals outside of the 
BS.                    

(chemicals        , reactions       ) satisfying 	・Take a subnetwork 	

�(�) ⌘ |M| � |R|+#cycles in � = 0

(i)	

(ii)	

Γ : buffering structure (BS), 緩衝構造.	

includes all reaction edges emanating from      .  
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from	a	nest	of	buffering	structures	
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(1)  Response patterns from network structures 

 
(2) Theorem connecting responses and network topology 

(3) Bifurcation phenomena and network structures  



Plasticity and Bifurcation Phenomena	
	
Ertugrul M. Ozbudak, et al, Nature, 2004	

	

GatR. However, GatR is absent in E. coli MG1655 (ref. 22). There-
fore, transcription at the gat promoter, measured by red fluores-
cence, is a direct measure of CRP-cAMP levels. In our experiments,
wemeasure the response of single cells, initially in a given state of lac
expression, to exposure to various combinations of glucose and
TMG levels (Fig. 2a). It is crucial to use cells withwell-defined initial
states, either uninduced or fully induced, because the response of a
bistable system is expected to depend on its history.
We find, in the absence of glucose, that the lac operon is

uninduced at low TMG concentrations (,3mM) and fully induced
at high TMG concentrations (.30 mM) regardless of the cell’s
history. Between these switching thresholds, however, system
response is hysteretic (history dependent): TMG levels must exceed
30 mM to turn on initially uninduced cells but must drop below
3mM to turn off initially induced cells (Fig. 2b). As we approach the
boundaries of this bistable region, stochastic mechanisms cause
growing numbers of cells to switch from their initial states, resulting
in a bimodal distribution of green fluorescence levels, with induced
cells having over one hundred times the fluorescence levels of
uninduced cells. This behaviour shows the importance of perform-
ing single-cell experiments, as a population-averaged measurement
would have shown the mean fluorescence level to move smoothly
between its low and high endpoints2, obscuring the fact that
individual cells never display intermediate fluorescence levels.
We find that the red fluorescence level is independent of cell

history and of TMG concentration, showing that the observed
history dependence of lac induction is not due to CRP. Red
fluorescence levels do decrease in response to an increase in glucose
concentration, ultimately dropping fivefold (Fig. 3a). There is a
proportional drop in the green fluorescence levels of induced cells,
reflecting the reduction in the levels of CRP-cAMP. The network
continues to respond hysteretically in the presence of glucose, but
higher levels of TMG are required to induce switching. By measur-
ing system response at several glucose concentrations ranging from
0 to 1mM, we are able tomap out the complete range of glucose and
TMG levels over which the system is bistable (Fig. 2c). This is the
phase diagram of the wild-type lactose utilization network.
The switching boundaries of this phase diagram correspond to

special conditions of network dynamics. By imposing these con-
ditions within amathematical model of the lac system, we are able to
use the phase diagram as a quantitative probe of molecular
processes in living single cells (see Supplementary Information).

The green fluorescence levels at each glucose and TMG concen-
tration can be written as a function of three parameters: a, b and r.
The maximal activity, a, is the lac expression level that would be
obtained if every repressor molecule were inactive. The repression
factor, r, gives the ratio of maximal to basal activities, the latter
being the expression level that would be obtained if every repressor
molecule were active. The transport rate, b, gives the TMG uptake
rate per LacYmolecule.We find thata is directly proportional to the
red fluorescence level (Fig. 3b), demonstrating that the lac and gat
promoters respond identically to CRP-cAMP. By contrast, a is
essentially independent of TMG levels, suggesting that LacI and
CRP bind independently to the lac operator site. We find the
repression factor r to be 170 ^ 30 regardless of the glucose and
TMG levels (Fig. 3c). This confirms a strong prediction of our
model—that r should be a function of the LacI concentration alone.
Assuming an effective LacI concentration in the nanomolar range13,
this value of r implies a dissociation constant between LacI and its
major DNA-binding site of about 10210 to 10211M, which is
consistent with reported values23.

The transport rate b is a product of two terms. The first term, bT,
which represents the TMG uptake rate per active LacY molecule, is
purely a function of extracellular TMG levels (Fig. 3d). By fitting bT

to a hyperbola, we find that the half-saturation concentration for
TMG uptake is 680 ^ 25 mM, which agrees with previous measure-
ments24. The second term, bG, which represents the fraction of LacY
molecules that are active, is purely a function of extracellular glucose
levels, reflecting the inducer-exclusion effect18. This allows us to
separate catabolite repression into its constituent parts (Fig. 3e). We
find that by lowering CRP-cAMP levels glucose reduces operon
expression by 80%, whereas by inactivating LacY molecules it
reduces TMG uptake by 35%. However, the network’s positive
feedback architecture amplifies these effects, resulting in the
observed hundred-fold difference in lac expression levels between
induced and uninduced cells. This type of global informationwould
be extremely difficult to obtain using standard molecular-genetic
techniques and in vitro biochemical assays. Our approach allows us
to study the wild-type network in its entirety rather than isolated
from other cellular systems or broken up into simpler
subcomponents.

The phase diagram of the wild-type network (Fig. 2c) shows that
lac induction always takes place hysteretically, with cells increasing
their expression levels discontinuously as a switching threshold is

 
 

Figure 2 Hysteresis and bistability in single cells. a, Overlayed green fluorescence and
inverted phase-contrast images of cells that are initially uninduced for lac expression, then

grown for 20 h in 18 mM TMG. The cell population shows a bimodal distribution of lac

expression levels, with induced cells having over one hundred times the green

fluorescence of uninduced cells. Scale bar, 2 mm. b, Behaviour of a series of cell
populations, each initially uninduced (lower panel) or fully induced (upper panel) for lac

expression, then grown in media containing various amounts of TMG. Scatter plots show

log(green fluorescence) versus log(red fluorescence) for about 1,000 cells in each

population. Each scatter plot is centred at a position that indicates the underlying TMG

concentration. The scale bar represents variation in red fluorescence by a factor of 10.

White arrows indicate the initial states of the cell populations in each panel. The TMG

concentration must increase above 30 mM to turn on initially uninduced cells (up arrow),

whereas it must decrease below 3mM to turn off initially induced cells (down arrow). The

grey region shows the range of TMG concentrations over which the system is hysteretic.

c, The phase diagram of the wild-type lactose utilization network. When glucose is added

to the medium, the hysteretic region moves to higher levels of TMG. At each glucose level,

the lower (down arrow) and upper (up arrow) switching thresholds show those

concentrations of TMG at which less than 5% of the cells are in their initial states.
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The concentration of the protein (necessary to utilize the 
nutrient) change discontinuously. 	



Steady-state bifurcation

Example: One-dimensional system (saddle-node bifurcation)

_x = f(x) = `—+ x2

For — < 0, ఆৗղͳ͠.
For — > 0, ෆ҆ఆղ̍ͭ (—x =

p
—) ͱ ҆ఆղ 1 ͭ (—x = `p—).

෼ذ఺ (— = 0) Ͱ͸, ϠίϏΞϯ J := @f
@x
jx=—x = 2—x = ˚2

p
— ͸ 0 ʹ.
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Bifurcation theory	

J =

 
@f
@x

@f
@y

@g
@x

@g
@y

!�����
~x=~x⇤

det J =
@f

@x

@g

@y
� @f

@y

@g

@x

In a multivariate case, 	
bif point ⇔ det J =0.	

ẋ = f(x, y)

ẏ = g(x, y)

At	bifurcation	point	(k=0),	the	Jacobian	J	becomes	0.	

dx

dt
= f(x) = �k + x2

J =
@f

@x
|x=x⇤ = 2x⇤ = ±2

p
k

k



Bifurcation analysis based on the matrix A	

At bif. point, 	det J = 0

Sensitivity Analysis ͱ؇িߏ଄ ͷ·ͱΊ
´ Խֶ൓Ԡܥ

dxm
dt

=
RX

n=1

‌mnrn(x; kn);

´ ఆৗঢ়ଶͷ sensitivity (i.e. @—xm
@kn
) ͸ɺωοτϫʔΫߏ଄͔Βఆٛ͞ΕΔྻߦ

A

A :=

0

@ @r

@x

˛̨
˛̨
x=x˜

˛̨
˛̨
˛̨ c1 c2 : : : cK

1

A; ‌ci = 0:

ͷྻߦٯ.

´ ؇িߏ଄ ` ͸ɺA ͸ਖ਼ํܗͷ nonzero ෼෍ʹରԠ.
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A B C 

� �̄

decomposition		

Buffering	Structure		

dx

dt
:= Sr(x)

J := S
@r

@x
|x=x⇤

2

Structural sensitivity analysis.—We label chemicals by
m (m = 1, · · · ,M) and reactions by n (n = 1, · · · , N). A
state of a spatially homogeneous chemical reaction sys-
tem is specified by the concentrations xm(t), and obeys
the differential equations [7–9]:

dxm

dt
=

N∑

n=1

νmnrn(x; kn), m = 1, . . . ,M. (1)

Here, the M × N matrix ν is called the stoichiometric
matrix, and its component νmn is defined as follows: Let
the stoichiometry of the n-th reaction among chemical
molecules Xm be given by

∑M
m=1 y

n
mXm →

∑M
m=1 ȳ

n
mXm

Then the νmn is given by νmn = ȳnm − ynm. The reaction
rate function (flux) rn depends on the concentration vec-
tor x and also on rate parameters kn.

To present the key idea, we start by assuming that the
stoichiometric matrix ν does not have nonzero cokernel
vectors, which in turn implies that rank(ν) = M ≤ N
and the steady state concentration x∗ and fluxes r∗ are
continuous functions of rate parameters {kn}Nn=1. The
general case will be presented in the Supplemental Mate-
rial (SM). For steady state x∗, one can choose {µα}N−M

α=1

such that the corresponding steady state flux r∗ is ex-
pressed, in terms of the basis {cα}N−M

α=1 of the kernel
space of ν, as

r∗ =
K∑

α=1

µαcα, K := N −M = dimker ν. (2)

Now we review the structural sensitivity analysis [7]
and the law of localization [10]. Under the perturbation
kn̂ → kn̂+δkn̂ (n̂ = 1, . . . , N), the corresponding concen-
tration changes δn̂xm and the flux changes δn̂rn at the
steady state x∗ are determined simultaneously by solving
the following equation

A

(
δ1x . . . δNx
δ1µ . . . δNµ

)
= −diag

(∂r1
∂k1

δk1, . . . ,
∂rN
∂kN

δkN
)
,

where the horizontal line denotes the structure of block
matrices, the derivatives are evaluated at the steady state
x∗, δn̂µ = (δn̂µ1, . . . , δn̂µK)T is the change of the coeffi-
cients µα in (2) under the perturbation: kn̂ → kn̂ + δkn̂,
and the matrix A is given by

A =
( ∂r
∂x

∣∣∣
x=x∗

− c1 . . .− cK
)
. (3)

Here the entry ∂rn/∂xm in the left part of A is given by
{

∂rn
∂xm
̸= 0 if xm influences reaction n,

∂rn
∂xm

= 0 otherwise.
(4)

Note that whether each entry of A is zero or nonzero
is determined structurally, that is, independently of de-
tailed forms of rate functions and quantitative values of
concentrations and parameters.

For a given network Γ, we consider a pair Γs = (m, n)
of a chemical subset m and a reaction subset n satisfying
the condition that n includes all reactions influenced by
chemicals in m (in the sense of (4)). We call such a Γs =
(m, n) as output-complete. For a subnetwork Γs = (m, n),
we define the index χ(Γs) as

χ(Γs) = |m|− |n|+ (#cycle). (5)

Here, |m| and |n| are the numbers of elements of the sets
m and n, respectively. The #cycle is the number of in-
dependent kernel vectors of the matrix ν whose supports
are contained in n. In general, χ(Γs) is non-positive (see
[10]). Then a buffering structure is defined as an output-
complete subnetwork Γs with χ(Γs) = 0.
Suppose that Γs = (m, n) is a buffering structure. By

permutating the column and row indices, the matrix A
can be written as follows: [10]

A = |n|
)*

|m|+(#cycle)

←−−−−→(
AΓssquare

∗
0 AΓ̄s

)
, (6)

where the rows (columns) of AΓs are associated with the
reactions (chemicals and cycles) in Γs. Similarly, those
of AΓ̄s

are associated with the complement Γ̄s := Γ\Γs.
The law of localization [10] is a direct consequence of

the block structure (6) of the matrix A: Steady-state
concentrations and fluxes outside of a buffering structure
does not change under any rate parameter perturbations
in n. In other words, all effects of perturbations of kn̂ in
n are indeed localized within Γs.
Structural bifurcation analysis.— We shortly sketch

the conventional bifurcation analysis. Set J :=
ν ∂r
∂x |x=x∗ . Let the eigenvalues {σm}Mm=1 of J be or-

dered so that Reσ1 ≥ Reσ2 . . .. Then the state x∗ is
stable if all Reσm < 0, whereas, the state x∗ is unsta-
ble if Reσ1 > 0. Moreover, a bifurcation occurs if Reσ1

changes its sign as some parameter kn̂ is varied through
some critical value, say k̄n̂. Since detJ =

∏M
m=1 σm, a

bifurcation occurs if det J changes its sign as kn̂ is varied
through k̄n̂. Thus, the study of the onset of bifurcation
is reduced to the search of the zeros of det J .
Now, we explain structural bifurcation analysis. The

following relation is the key to our method:

det J ∝ detA, (7)

where the proportionality constant depends only on the
stoichiometric matrix ν. See the SM for the proof. Then
(7) implies that the study of the onset of bifurcation of
system (1) can be reduced to the search of the zeros of
detA. Further, the existence of the buffering structure
Γs of the network Γ guarantees the following relation

det J ∝ detAΓs · detAΓ̄s
. (8)

2
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Here, |m| and |n| are the numbers of elements of the sets
m and n, respectively. The #cycle is the number of in-
dependent kernel vectors of the matrix ν whose supports
are contained in n. In general, χ(Γs) is non-positive (see
[10]). Then a buffering structure is defined as an output-
complete subnetwork Γs with χ(Γs) = 0.
Suppose that Γs = (m, n) is a buffering structure. By
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can be written as follows: [10]
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where the rows (columns) of AΓs are associated with the
reactions (chemicals and cycles) in Γs. Similarly, those
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are associated with the complement Γ̄s := Γ\Γs.
The law of localization [10] is a direct consequence of

the block structure (6) of the matrix A: Steady-state
concentrations and fluxes outside of a buffering structure
does not change under any rate parameter perturbations
in n. In other words, all effects of perturbations of kn̂ in
n are indeed localized within Γs.
Structural bifurcation analysis.— We shortly sketch

the conventional bifurcation analysis. Set J :=
ν ∂r
∂x |x=x∗ . Let the eigenvalues {σm}Mm=1 of J be or-

dered so that Reσ1 ≥ Reσ2 . . .. Then the state x∗ is
stable if all Reσm < 0, whereas, the state x∗ is unsta-
ble if Reσ1 > 0. Moreover, a bifurcation occurs if Reσ1

changes its sign as some parameter kn̂ is varied through
some critical value, say k̄n̂. Since detJ =

∏M
m=1 σm, a

bifurcation occurs if det J changes its sign as kn̂ is varied
through k̄n̂. Thus, the study of the onset of bifurcation
is reduced to the search of the zeros of det J .
Now, we explain structural bifurcation analysis. The

following relation is the key to our method:

det J ∝ detA, (7)

where the proportionality constant depends only on the
stoichiometric matrix ν. See the SM for the proof. Then
(7) implies that the study of the onset of bifurcation of
system (1) can be reduced to the search of the zeros of
detA. Further, the existence of the buffering structure
Γs of the network Γ guarantees the following relation
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det J = detA

kerS
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An extension of (8) to a nested sequence of buffering
structures Γ1 ⊂ . . . ⊂ ΓL gives the relation det J ∝
detAΓ1

∏L−1
s=1 detAΓs+1\Γs

.
There are several implications of the factorization (8).

First, from the equality det J = 0, we have either
detAΓs = 0 or detAΓ̄s

= 0. In other words, the pos-
sibility of bifurcation occurrences in the whole system
can be studied by examining the possibility for each of
the subnetworks from their structures.

Second, from the law of localization (see the SM for
details), detAΓ̄s

depends only on parameters outside Γs,
whereas detAΓs depends on parameters in the whole net-
work Γ. Thus, bifurcations associated with detAΓ̄s

are
triggered only by tuning parameters in Γ̄s, while bifur-
cations associated with detAΓs can be induced by both
parameters in Γs and those in Γ̄s (see inducing param-
eters in Fig. 1 (4)). In particular, in the former case,
critical values (values at bifurcation points) of parame-
ters in Γ̄s are independent of parameters in Γs.

Third, as shown in the SM, the null vector of the Ja-
cobian J at a bifurcation point with detAΓs = 0 has
nonzero components only for chemicals in Γs. This im-
plies that only chemicals in Γs exhibit bifurcations at
this bifurcation point. By contrast, for bifurcations asso-
ciated with detAΓ̄s

, all chemicals in Γ exhibit bifurcation
behaviors (see bifurcating chemicals in Fig. 1 (5)). These
three arguments are generalized into multiple buffering
structures, as stated in the introductory part of this Let-
ter.

A B C
1 

2 4 

5 3 

FIG. 2: System consisting of five reactions,
k1→ A,

A
k3!
k2

B, B
k4→ C, C

k5→. The three blue dashed arcs

indicate the regulations explained in the text. The red
box indicates a buffering structure Γs.

Hypothetical network.—We demonstrate the structural
bifurcation analysis in the system shown in Fig. 2. The
stoichiometry matrix ν and the kernel vectors are

ν =

⎛

⎝
1 −1 1 0 0
0 1 −1 −1 0
0 0 0 1 −1

⎞

⎠ ,

c1 = (0, 1, 1, 0, 0)T , c2 = (1, 1, 0, 1, 1)T . (9)

Every reaction rate depends on the substrate concen-
tration. Reaction rates r3, r5, and r4 are also regulated
by A, B, and C, respectively. Then, Γs = ({A}, {2, 3}) is
a buffering structure since χ(Γs) = 1− 2 + 1 = 0.

By permutating the row index as {2, 3, 1, 4, 5} and the
column index as {A, c1, B, C, c2}, the matrix A and the
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FIG. 3: Steady-state values of det AΓs , det AΓ̄s
, x∗

A,
x∗
C versus k5,B in (a), k3,A in (b), k5,B in (c). Red and
blue curves correspond to two choices of parameters in
Γs in (a) and (c), two choices of parameters in Γ̄s in (b).
In the top panel of each case, the dark-colored region

indicates the subnetwork whose determinant changes its
sign at the bifurcation point, and the green- and

purple-shaded regions indicate the inducing parameters
and bifurcating chemicals, respectively. See the SM for

the specific parameter values used for the plots.

determinant are given by

A =

(
AΓs ∗
0 AΓ̄s

)
=

⎛

⎜⎜⎜⎜⎝

r2,A 1 0 0 1
r3,A 1 r3,B 0 0
0 0 0 0 1
0 0 r4,B r4,C 1
0 0 r5,B r5,C 1

⎞

⎟⎟⎟⎟⎠
,

detA = (r2,A − r3,A)︸ ︷︷ ︸
detAΓs

(r5,Br4,C − r4,Br5,C)︸ ︷︷ ︸
detAΓ̄s

, (10)

where nonzero ∂rn
∂xm

|x=x∗ is written by rn,m, m = A,
B, C. Due to the expression of detA, we conclude that
the regulations corresponding to r3,A and (r4,C, r5,B) are
necessary for bifurcations associated with detAΓs = 0
and detAΓ̄s

= 0, respectively. In this way, the possibility
of bifurcation occurrences can be examined structurally
for each subnetwork.

For numerical demonstration, we assume the following

3

An extension of (8) to a nested sequence of buffering
structures Γ1 ⊂ . . . ⊂ ΓL gives the relation det J ∝
detAΓ1

∏L−1
s=1 detAΓs+1\Γs

.
There are several implications of the factorization (8).

First, from the equality det J = 0, we have either
detAΓs = 0 or detAΓ̄s

= 0. In other words, the pos-
sibility of bifurcation occurrences in the whole system
can be studied by examining the possibility for each of
the subnetworks from their structures.

Second, from the law of localization (see the SM for
details), detAΓ̄s

depends only on parameters outside Γs,
whereas detAΓs depends on parameters in the whole net-
work Γ. Thus, bifurcations associated with detAΓ̄s

are
triggered only by tuning parameters in Γ̄s, while bifur-
cations associated with detAΓs can be induced by both
parameters in Γs and those in Γ̄s (see inducing param-
eters in Fig. 1 (4)). In particular, in the former case,
critical values (values at bifurcation points) of parame-
ters in Γ̄s are independent of parameters in Γs.

Third, as shown in the SM, the null vector of the Ja-
cobian J at a bifurcation point with detAΓs = 0 has
nonzero components only for chemicals in Γs. This im-
plies that only chemicals in Γs exhibit bifurcations at
this bifurcation point. By contrast, for bifurcations asso-
ciated with detAΓ̄s

, all chemicals in Γ exhibit bifurcation
behaviors (see bifurcating chemicals in Fig. 1 (5)). These
three arguments are generalized into multiple buffering
structures, as stated in the introductory part of this Let-
ter.

A B C
1 

2 4 

5 3 

FIG. 2: System consisting of five reactions,
k1→ A,

A
k3!
k2

B, B
k4→ C, C

k5→. The three blue dashed arcs

indicate the regulations explained in the text. The red
box indicates a buffering structure Γs.

Hypothetical network.—We demonstrate the structural
bifurcation analysis in the system shown in Fig. 2. The
stoichiometry matrix ν and the kernel vectors are

ν =

⎛

⎝
1 −1 1 0 0
0 1 −1 −1 0
0 0 0 1 −1

⎞

⎠ ,

c1 = (0, 1, 1, 0, 0)T , c2 = (1, 1, 0, 1, 1)T . (9)

Every reaction rate depends on the substrate concen-
tration. Reaction rates r3, r5, and r4 are also regulated
by A, B, and C, respectively. Then, Γs = ({A}, {2, 3}) is
a buffering structure since χ(Γs) = 1− 2 + 1 = 0.

By permutating the row index as {2, 3, 1, 4, 5} and the
column index as {A, c1, B, C, c2}, the matrix A and the
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FIG. 3: Steady-state values of det AΓs , det AΓ̄s
, x∗

A,
x∗
C versus k5,B in (a), k3,A in (b), k5,B in (c). Red and
blue curves correspond to two choices of parameters in
Γs in (a) and (c), two choices of parameters in Γ̄s in (b).
In the top panel of each case, the dark-colored region

indicates the subnetwork whose determinant changes its
sign at the bifurcation point, and the green- and

purple-shaded regions indicate the inducing parameters
and bifurcating chemicals, respectively. See the SM for

the specific parameter values used for the plots.

determinant are given by

A =

(
AΓs ∗
0 AΓ̄s

)
=

⎛

⎜⎜⎜⎜⎝

r2,A 1 0 0 1
r3,A 1 r3,B 0 0
0 0 0 0 1
0 0 r4,B r4,C 1
0 0 r5,B r5,C 1

⎞

⎟⎟⎟⎟⎠
,

detA = (r2,A − r3,A)︸ ︷︷ ︸
detAΓs

(r5,Br4,C − r4,Br5,C)︸ ︷︷ ︸
detAΓ̄s

, (10)

where nonzero ∂rn
∂xm

|x=x∗ is written by rn,m, m = A,
B, C. Due to the expression of detA, we conclude that
the regulations corresponding to r3,A and (r4,C, r5,B) are
necessary for bifurcations associated with detAΓs = 0
and detAΓ̄s

= 0, respectively. In this way, the possibility
of bifurcation occurrences can be examined structurally
for each subnetwork.

For numerical demonstration, we assume the following

× 

× 

x⇤
B

k5,B k5,B
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Structural Bifurcation Analysis in Chemical Reaction Networks
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In living cells, chemical reactions form a complex network. Complicated dynamics arising from
such networks are the origins of biological functions. We propose a novel mathematical method to
analyze bifurcation behaviors of a reaction system from the network structure alone. The whole
network is decomposed into subnetworks based on “buffering structures”. For each subnetwork,
the bifurcation condition is studied independently, and the parameters that can induce bifurcations
and the chemicals that can exhibit bifurcations are determined. We demonstrate our theory using
hypothetical and real networks.

Introduction.—In a living cell, a large set of chemical
reactions are connected by sharing their products and
substrates, and constructing a large network. Biological
functions are believed to arise from dynamics of chemical
concentrations based on the networks. It is also consid-
ered that regulations and adaptations of biological sys-
tems are realized by modulations of amount/activities of
enzymes mediating reactions. In previous studies [7, 10],
we developed a mathematical method, by which the sen-
sitivity responses of chemical reaction networks to per-
turbations of enzyme amount/activities are determined
from network structures alone. Our method is based on
an augmented matrixA (see Eq. (3)), in which the distri-
bution of nonzero entries directly reflects network struc-
tures. One of the striking result is the law of localization
[10]. A substructure (subset of chemicals and reactions)
in a reaction network satisfying a topological condition
is called buffering structure (Fig. 1(1), (2)), and has the
property that perturbations of reaction rate parameters
inside a buffering structure influence only (steady-state)
concentrations and fluxes inside this structure, and the
outside remains unchanged under the perturbations.

In this Letter, we study another aspect governed by
buffering structures: bifurcation behaviors of reaction
systems. We prove that the determinant of the Jacobian
matrix J of a reaction system is equivalent to that of
the augmented matrix A for the corresponding network
structure. Based on this equivalence, we study steady-
state bifurcations of reaction systems from network struc-
tures. In this Letter, our usage of “parameter” always
means a parameter associated with a reaction rate.

From the structural bifurcation analysis based on the
matrix A, we obtain the following general results on
steady-state bifurcations in reaction networks.

(i) Factorization: A is factorized into submatrices
based on the buffering structures (Fig. 1(3)). It implies
that bifurcation behaviors in a complex network can
be studied by decomposing it into smaller subnetworks,
which are buffering structures with subtraction of their
inner buffering structures. For each subnetwork, the con-
dition of bifurcation occurrence is determined from the
structure of the subnetwork.

 
 
 

(2) Buffering structures in A 

(3) Factorization of  
bifurcation condition 

(1) Example network 

=A

(1) Example network 

(4) Inducing parameters 

(5) Bifurcating chemicals 

! " ! 
! ! " 

" 

re
ac

tio
ns

 

chemicals, cycles 

FIG. 1: Summary of the structural bifurcation analysis.
(1) Buffering structures (red boxes) in an example
network. (2) Buffering structure corresponds to

nonzero square blocks in A. (3) Bifurcations in the
whole system are governed by a product of buffering
structures with subtraction of their inner buffering
structures. (4) For each subnetwork, parameters in

shadowed area can induce bifurcations associated with
the subnetwork. (5) For each subnetwork, chemicals in

shadowed area exhibit bifurcations.

(ii) Inducing parameters: For each subnetwork, bifur-
cation is induced by parameter changes which are neither
in buffering structures inside the subnetwork nor those
non-intersecting with the subnetwork (Fig. 1 (4)).

(iii) Bifurcating chemicals (and fluxes): When the con-
dition of bifurcation associated with a subnetwork is sat-
isfied, the bifurcation of steady-state concentrations (and
fluxes) appears only inside the (minimal) buffering struc-
ture containing the subnetwork (Fig. 1 (5)).

These findings make it possible to study behaviors of
a whole reaction system including multiple bifurcations
based on inclusion relations of buffering structures. We
apply our method to hypothetical and real networks, and
demonstrate the practical usefulness to analyze behaviors
of complex systems.
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In living cells, chemical reactions form a complex network. Complicated dynamics arising from
such networks are the origins of biological functions. We propose a novel mathematical method to
analyze bifurcation behaviors of a reaction system from the network structure alone. The whole
network is decomposed into subnetworks based on “buffering structures”. For each subnetwork,
the bifurcation condition is studied independently, and the parameters that can induce bifurcations
and the chemicals that can exhibit bifurcations are determined. We demonstrate our theory using
hypothetical and real networks.

Introduction.—In a living cell, a large set of chemical
reactions are connected by sharing their products and
substrates, and constructing a large network. Biological
functions are believed to arise from dynamics of chemical
concentrations based on the networks. It is also consid-
ered that regulations and adaptations of biological sys-
tems are realized by modulations of amount/activities of
enzymes mediating reactions. In previous studies [7, 10],
we developed a mathematical method, by which the sen-
sitivity responses of chemical reaction networks to per-
turbations of enzyme amount/activities are determined
from network structures alone. Our method is based on
an augmented matrixA (see Eq. (3)), in which the distri-
bution of nonzero entries directly reflects network struc-
tures. One of the striking result is the law of localization
[10]. A substructure (subset of chemicals and reactions)
in a reaction network satisfying a topological condition
is called buffering structure (Fig. 1(1), (2)), and has the
property that perturbations of reaction rate parameters
inside a buffering structure influence only (steady-state)
concentrations and fluxes inside this structure, and the
outside remains unchanged under the perturbations.

In this Letter, we study another aspect governed by
buffering structures: bifurcation behaviors of reaction
systems. We prove that the determinant of the Jacobian
matrix J of a reaction system is equivalent to that of
the augmented matrix A for the corresponding network
structure. Based on this equivalence, we study steady-
state bifurcations of reaction systems from network struc-
tures. In this Letter, our usage of “parameter” always
means a parameter associated with a reaction rate.

From the structural bifurcation analysis based on the
matrix A, we obtain the following general results on
steady-state bifurcations in reaction networks.

(i) Factorization: A is factorized into submatrices
based on the buffering structures (Fig. 1(3)). It implies
that bifurcation behaviors in a complex network can
be studied by decomposing it into smaller subnetworks,
which are buffering structures with subtraction of their
inner buffering structures. For each subnetwork, the con-
dition of bifurcation occurrence is determined from the
structure of the subnetwork.

 
 
 

(2) Buffering structures in A 

(3) Factorization of  
bifurcation condition 

(1) Example network 

=A

(1) Example network 

(4) Inducing parameters 

(5) Bifurcating chemicals 

! " ! 
! ! " 

" 

re
ac

tio
ns

 

chemicals, cycles 

FIG. 1: Summary of the structural bifurcation analysis.
(1) Buffering structures (red boxes) in an example
network. (2) Buffering structure corresponds to

nonzero square blocks in A. (3) Bifurcations in the
whole system are governed by a product of buffering
structures with subtraction of their inner buffering
structures. (4) For each subnetwork, parameters in

shadowed area can induce bifurcations associated with
the subnetwork. (5) For each subnetwork, chemicals in

shadowed area exhibit bifurcations.

(ii) Inducing parameters: For each subnetwork, bifur-
cation is induced by parameter changes which are neither
in buffering structures inside the subnetwork nor those
non-intersecting with the subnetwork (Fig. 1 (4)).

(iii) Bifurcating chemicals (and fluxes): When the con-
dition of bifurcation associated with a subnetwork is sat-
isfied, the bifurcation of steady-state concentrations (and
fluxes) appears only inside the (minimal) buffering struc-
ture containing the subnetwork (Fig. 1 (5)).

These findings make it possible to study behaviors of
a whole reaction system including multiple bifurcations
based on inclusion relations of buffering structures. We
apply our method to hypothetical and real networks, and
demonstrate the practical usefulness to analyze behaviors
of complex systems.
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(ii) Inducing parameters: For each subnetwork, bifur-
cation is induced by parameter changes which are neither
in buffering structures inside the subnetwork nor those
non-intersecting with the subnetwork (Fig. 1 (4)).

(iii) Bifurcating chemicals (and fluxes): When the con-
dition of bifurcation associated with a subnetwork is sat-
isfied, the bifurcation of steady-state concentrations (and
fluxes) appears only inside the (minimal) buffering struc-
ture containing the subnetwork (Fig. 1 (5)).

These findings make it possible to study behaviors of
a whole reaction system including multiple bifurcations
based on inclusion relations of buffering structures. We
apply our method to hypothetical and real networks, and
demonstrate the practical usefulness to analyze behaviors
of complex systems.
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(ii) Inducing parameters: For each subnetwork, bifur-
cation is induced by parameter changes which are neither
in buffering structures inside the subnetwork nor those
non-intersecting with the subnetwork (Fig. 1 (4)).

(iii) Bifurcating chemicals (and fluxes): When the con-
dition of bifurcation associated with a subnetwork is sat-
isfied, the bifurcation of steady-state concentrations (and
fluxes) appears only inside the (minimal) buffering struc-
ture containing the subnetwork (Fig. 1 (5)).

These findings make it possible to study behaviors of
a whole reaction system including multiple bifurcations
based on inclusion relations of buffering structures. We
apply our method to hypothetical and real networks, and
demonstrate the practical usefulness to analyze behaviors
of complex systems.
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(ii) Inducing parameters: For each subnetwork, bifur-
cation is induced by parameter changes which are neither
in buffering structures inside the subnetwork nor those
non-intersecting with the subnetwork (Fig. 1 (4)).

(iii) Bifurcating chemicals (and fluxes): When the con-
dition of bifurcation associated with a subnetwork is sat-
isfied, the bifurcation of steady-state concentrations (and
fluxes) appears only inside the (minimal) buffering struc-
ture containing the subnetwork (Fig. 1 (5)).

These findings make it possible to study behaviors of
a whole reaction system including multiple bifurcations
based on inclusion relations of buffering structures. We
apply our method to hypothetical and real networks, and
demonstrate the practical usefulness to analyze behaviors
of complex systems.
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the augmented matrix A for the corresponding network
structure. Based on this equivalence, we study steady-
state bifurcations of reaction systems from network struc-
tures. In this Letter, our usage of “parameter” always
means a parameter associated with a reaction rate.
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matrix A, we obtain the following general results on
steady-state bifurcations in reaction networks.

(i) Factorization: A is factorized into submatrices
based on the buffering structures (Fig. 1(3)). It implies
that bifurcation behaviors in a complex network can
be studied by decomposing it into smaller subnetworks,
which are buffering structures with subtraction of their
inner buffering structures. For each subnetwork, the con-
dition of bifurcation occurrence is determined from the
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(ii) Inducing parameters: For each subnetwork, bifur-
cation is induced by parameter changes which are neither
in buffering structures inside the subnetwork nor those
non-intersecting with the subnetwork (Fig. 1 (4)).

(iii) Bifurcating chemicals (and fluxes): When the con-
dition of bifurcation associated with a subnetwork is sat-
isfied, the bifurcation of steady-state concentrations (and
fluxes) appears only inside the (minimal) buffering struc-
ture containing the subnetwork (Fig. 1 (5)).

These findings make it possible to study behaviors of
a whole reaction system including multiple bifurcations
based on inclusion relations of buffering structures. We
apply our method to hypothetical and real networks, and
demonstrate the practical usefulness to analyze behaviors
of complex systems.
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(ii) Inducing parameters: For each subnetwork, bifur-
cation is induced by parameter changes which are neither
in buffering structures inside the subnetwork nor those
non-intersecting with the subnetwork (Fig. 1 (4)).

(iii) Bifurcating chemicals (and fluxes): When the con-
dition of bifurcation associated with a subnetwork is sat-
isfied, the bifurcation of steady-state concentrations (and
fluxes) appears only inside the (minimal) buffering struc-
ture containing the subnetwork (Fig. 1 (5)).

These findings make it possible to study behaviors of
a whole reaction system including multiple bifurcations
based on inclusion relations of buffering structures. We
apply our method to hypothetical and real networks, and
demonstrate the practical usefulness to analyze behaviors
of complex systems.
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(ii) Inducing parameters: For each subnetwork, bifur-
cation is induced by parameter changes which are neither
in buffering structures inside the subnetwork nor those
non-intersecting with the subnetwork (Fig. 1 (4)).
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isfied, the bifurcation of steady-state concentrations (and
fluxes) appears only inside the (minimal) buffering struc-
ture containing the subnetwork (Fig. 1 (5)).

These findings make it possible to study behaviors of
a whole reaction system including multiple bifurcations
based on inclusion relations of buffering structures. We
apply our method to hypothetical and real networks, and
demonstrate the practical usefulness to analyze behaviors
of complex systems.
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In living cells, chemical reactions form a complex network. Complicated dynamics arising from
such networks are the origins of biological functions. We propose a novel mathematical method to
analyze bifurcation behaviors of a reaction system from the network structure alone. The whole
network is decomposed into subnetworks based on “buffering structures”. For each subnetwork,
the bifurcation condition is studied independently, and the parameters that can induce bifurcations
and the chemicals that can exhibit bifurcations are determined. We demonstrate our theory using
hypothetical and real networks.

Introduction.—In a living cell, a large set of chemical
reactions are connected by sharing their products and
substrates, and constructing a large network. Biological
functions are believed to arise from dynamics of chemical
concentrations based on the networks. It is also consid-
ered that regulations and adaptations of biological sys-
tems are realized by modulations of amount/activities of
enzymes mediating reactions. In previous studies [7, 10],
we developed a mathematical method, by which the sen-
sitivity responses of chemical reaction networks to per-
turbations of enzyme amount/activities are determined
from network structures alone. Our method is based on
an augmented matrixA (see Eq. (3)), in which the distri-
bution of nonzero entries directly reflects network struc-
tures. One of the striking result is the law of localization
[10]. A substructure (subset of chemicals and reactions)
in a reaction network satisfying a topological condition
is called buffering structure (Fig. 1(1), (2)), and has the
property that perturbations of reaction rate parameters
inside a buffering structure influence only (steady-state)
concentrations and fluxes inside this structure, and the
outside remains unchanged under the perturbations.

In this Letter, we study another aspect governed by
buffering structures: bifurcation behaviors of reaction
systems. We prove that the determinant of the Jacobian
matrix J of a reaction system is equivalent to that of
the augmented matrix A for the corresponding network
structure. Based on this equivalence, we study steady-
state bifurcations of reaction systems from network struc-
tures. In this Letter, our usage of “parameter” always
means a parameter associated with a reaction rate.

From the structural bifurcation analysis based on the
matrix A, we obtain the following general results on
steady-state bifurcations in reaction networks.

(i) Factorization: A is factorized into submatrices
based on the buffering structures (Fig. 1(3)). It implies
that bifurcation behaviors in a complex network can
be studied by decomposing it into smaller subnetworks,
which are buffering structures with subtraction of their
inner buffering structures. For each subnetwork, the con-
dition of bifurcation occurrence is determined from the
structure of the subnetwork.
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FIG. 1: Summary of the structural bifurcation analysis.
(1) Buffering structures (red boxes) in an example
network. (2) Buffering structure corresponds to

nonzero square blocks in A. (3) Bifurcations in the
whole system are governed by a product of buffering
structures with subtraction of their inner buffering
structures. (4) For each subnetwork, parameters in

shadowed area can induce bifurcations associated with
the subnetwork. (5) For each subnetwork, chemicals in

shadowed area exhibit bifurcations.

(ii) Inducing parameters: For each subnetwork, bifur-
cation is induced by parameter changes which are neither
in buffering structures inside the subnetwork nor those
non-intersecting with the subnetwork (Fig. 1 (4)).

(iii) Bifurcating chemicals (and fluxes): When the con-
dition of bifurcation associated with a subnetwork is sat-
isfied, the bifurcation of steady-state concentrations (and
fluxes) appears only inside the (minimal) buffering struc-
ture containing the subnetwork (Fig. 1 (5)).

These findings make it possible to study behaviors of
a whole reaction system including multiple bifurcations
based on inclusion relations of buffering structures. We
apply our method to hypothetical and real networks, and
demonstrate the practical usefulness to analyze behaviors
of complex systems.
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is called buffering structure (Fig. 1(1), (2)), and has the
property that perturbations of reaction rate parameters
inside a buffering structure influence only (steady-state)
concentrations and fluxes inside this structure, and the
outside remains unchanged under the perturbations.

In this Letter, we study another aspect governed by
buffering structures: bifurcation behaviors of reaction
systems. We prove that the determinant of the Jacobian
matrix J of a reaction system is equivalent to that of
the augmented matrix A for the corresponding network
structure. Based on this equivalence, we study steady-
state bifurcations of reaction systems from network struc-
tures. In this Letter, our usage of “parameter” always
means a parameter associated with a reaction rate.

From the structural bifurcation analysis based on the
matrix A, we obtain the following general results on
steady-state bifurcations in reaction networks.

(i) Factorization: A is factorized into submatrices
based on the buffering structures (Fig. 1(3)). It implies
that bifurcation behaviors in a complex network can
be studied by decomposing it into smaller subnetworks,
which are buffering structures with subtraction of their
inner buffering structures. For each subnetwork, the con-
dition of bifurcation occurrence is determined from the
structure of the subnetwork.
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(ii) Inducing parameters: For each subnetwork, bifur-
cation is induced by parameter changes which are neither
in buffering structures inside the subnetwork nor those
non-intersecting with the subnetwork (Fig. 1 (4)).

(iii) Bifurcating chemicals (and fluxes): When the con-
dition of bifurcation associated with a subnetwork is sat-
isfied, the bifurcation of steady-state concentrations (and
fluxes) appears only inside the (minimal) buffering struc-
ture containing the subnetwork (Fig. 1 (5)).

These findings make it possible to study behaviors of
a whole reaction system including multiple bifurcations
based on inclusion relations of buffering structures. We
apply our method to hypothetical and real networks, and
demonstrate the practical usefulness to analyze behaviors
of complex systems.
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matrix J of a reaction system is equivalent to that of
the augmented matrix A for the corresponding network
structure. Based on this equivalence, we study steady-
state bifurcations of reaction systems from network struc-
tures. In this Letter, our usage of “parameter” always
means a parameter associated with a reaction rate.

From the structural bifurcation analysis based on the
matrix A, we obtain the following general results on
steady-state bifurcations in reaction networks.

(i) Factorization: A is factorized into submatrices
based on the buffering structures (Fig. 1(3)). It implies
that bifurcation behaviors in a complex network can
be studied by decomposing it into smaller subnetworks,
which are buffering structures with subtraction of their
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(ii) Inducing parameters: For each subnetwork, bifur-
cation is induced by parameter changes which are neither
in buffering structures inside the subnetwork nor those
non-intersecting with the subnetwork (Fig. 1 (4)).

(iii) Bifurcating chemicals (and fluxes): When the con-
dition of bifurcation associated with a subnetwork is sat-
isfied, the bifurcation of steady-state concentrations (and
fluxes) appears only inside the (minimal) buffering struc-
ture containing the subnetwork (Fig. 1 (5)).

These findings make it possible to study behaviors of
a whole reaction system including multiple bifurcations
based on inclusion relations of buffering structures. We
apply our method to hypothetical and real networks, and
demonstrate the practical usefulness to analyze behaviors
of complex systems.
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is called buffering structure (Fig. 1(1), (2)), and has the
property that perturbations of reaction rate parameters
inside a buffering structure influence only (steady-state)
concentrations and fluxes inside this structure, and the
outside remains unchanged under the perturbations.

In this Letter, we study another aspect governed by
buffering structures: bifurcation behaviors of reaction
systems. We prove that the determinant of the Jacobian
matrix J of a reaction system is equivalent to that of
the augmented matrix A for the corresponding network
structure. Based on this equivalence, we study steady-
state bifurcations of reaction systems from network struc-
tures. In this Letter, our usage of “parameter” always
means a parameter associated with a reaction rate.

From the structural bifurcation analysis based on the
matrix A, we obtain the following general results on
steady-state bifurcations in reaction networks.

(i) Factorization: A is factorized into submatrices
based on the buffering structures (Fig. 1(3)). It implies
that bifurcation behaviors in a complex network can
be studied by decomposing it into smaller subnetworks,
which are buffering structures with subtraction of their
inner buffering structures. For each subnetwork, the con-
dition of bifurcation occurrence is determined from the
structure of the subnetwork.
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(ii) Inducing parameters: For each subnetwork, bifur-
cation is induced by parameter changes which are neither
in buffering structures inside the subnetwork nor those
non-intersecting with the subnetwork (Fig. 1 (4)).

(iii) Bifurcating chemicals (and fluxes): When the con-
dition of bifurcation associated with a subnetwork is sat-
isfied, the bifurcation of steady-state concentrations (and
fluxes) appears only inside the (minimal) buffering struc-
ture containing the subnetwork (Fig. 1 (5)).

These findings make it possible to study behaviors of
a whole reaction system including multiple bifurcations
based on inclusion relations of buffering structures. We
apply our method to hypothetical and real networks, and
demonstrate the practical usefulness to analyze behaviors
of complex systems.
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is called buffering structure (Fig. 1(1), (2)), and has the
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outside remains unchanged under the perturbations.

In this Letter, we study another aspect governed by
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systems. We prove that the determinant of the Jacobian
matrix J of a reaction system is equivalent to that of
the augmented matrix A for the corresponding network
structure. Based on this equivalence, we study steady-
state bifurcations of reaction systems from network struc-
tures. In this Letter, our usage of “parameter” always
means a parameter associated with a reaction rate.
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(i) Factorization: A is factorized into submatrices
based on the buffering structures (Fig. 1(3)). It implies
that bifurcation behaviors in a complex network can
be studied by decomposing it into smaller subnetworks,
which are buffering structures with subtraction of their
inner buffering structures. For each subnetwork, the con-
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(ii) Inducing parameters: For each subnetwork, bifur-
cation is induced by parameter changes which are neither
in buffering structures inside the subnetwork nor those
non-intersecting with the subnetwork (Fig. 1 (4)).

(iii) Bifurcating chemicals (and fluxes): When the con-
dition of bifurcation associated with a subnetwork is sat-
isfied, the bifurcation of steady-state concentrations (and
fluxes) appears only inside the (minimal) buffering struc-
ture containing the subnetwork (Fig. 1 (5)).

These findings make it possible to study behaviors of
a whole reaction system including multiple bifurcations
based on inclusion relations of buffering structures. We
apply our method to hypothetical and real networks, and
demonstrate the practical usefulness to analyze behaviors
of complex systems.
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inside a buffering structure influence only (steady-state)
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systems. We prove that the determinant of the Jacobian
matrix J of a reaction system is equivalent to that of
the augmented matrix A for the corresponding network
structure. Based on this equivalence, we study steady-
state bifurcations of reaction systems from network struc-
tures. In this Letter, our usage of “parameter” always
means a parameter associated with a reaction rate.
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matrix A, we obtain the following general results on
steady-state bifurcations in reaction networks.

(i) Factorization: A is factorized into submatrices
based on the buffering structures (Fig. 1(3)). It implies
that bifurcation behaviors in a complex network can
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which are buffering structures with subtraction of their
inner buffering structures. For each subnetwork, the con-
dition of bifurcation occurrence is determined from the
structure of the subnetwork.
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(ii) Inducing parameters: For each subnetwork, bifur-
cation is induced by parameter changes which are neither
in buffering structures inside the subnetwork nor those
non-intersecting with the subnetwork (Fig. 1 (4)).

(iii) Bifurcating chemicals (and fluxes): When the con-
dition of bifurcation associated with a subnetwork is sat-
isfied, the bifurcation of steady-state concentrations (and
fluxes) appears only inside the (minimal) buffering struc-
ture containing the subnetwork (Fig. 1 (5)).

These findings make it possible to study behaviors of
a whole reaction system including multiple bifurcations
based on inclusion relations of buffering structures. We
apply our method to hypothetical and real networks, and
demonstrate the practical usefulness to analyze behaviors
of complex systems.
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that bifurcation behaviors in a complex network can
be studied by decomposing it into smaller subnetworks,
which are buffering structures with subtraction of their
inner buffering structures. For each subnetwork, the con-
dition of bifurcation occurrence is determined from the
structure of the subnetwork.
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FIG. 1: Summary of the structural bifurcation analysis.
(1) Buffering structures (red boxes) in an example
network. (2) Buffering structure corresponds to

nonzero square blocks in A. (3) Bifurcations in the
whole system are governed by a product of buffering
structures with subtraction of their inner buffering
structures. (4) For each subnetwork, parameters in

shadowed area can induce bifurcations associated with
the subnetwork. (5) For each subnetwork, chemicals in

shadowed area exhibit bifurcations.

(ii) Inducing parameters: For each subnetwork, bifur-
cation is induced by parameter changes which are neither
in buffering structures inside the subnetwork nor those
non-intersecting with the subnetwork (Fig. 1 (4)).

(iii) Bifurcating chemicals (and fluxes): When the con-
dition of bifurcation associated with a subnetwork is sat-
isfied, the bifurcation of steady-state concentrations (and
fluxes) appears only inside the (minimal) buffering struc-
ture containing the subnetwork (Fig. 1 (5)).

These findings make it possible to study behaviors of
a whole reaction system including multiple bifurcations
based on inclusion relations of buffering structures. We
apply our method to hypothetical and real networks, and
demonstrate the practical usefulness to analyze behaviors
of complex systems.
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tems are realized by modulations of amount/activities of
enzymes mediating reactions. In previous studies [7, 10],
we developed a mathematical method, by which the sen-
sitivity responses of chemical reaction networks to per-
turbations of enzyme amount/activities are determined
from network structures alone. Our method is based on
an augmented matrixA (see Eq. (3)), in which the distri-
bution of nonzero entries directly reflects network struc-
tures. One of the striking result is the law of localization
[10]. A substructure (subset of chemicals and reactions)
in a reaction network satisfying a topological condition
is called buffering structure (Fig. 1(1), (2)), and has the
property that perturbations of reaction rate parameters
inside a buffering structure influence only (steady-state)
concentrations and fluxes inside this structure, and the
outside remains unchanged under the perturbations.

In this Letter, we study another aspect governed by
buffering structures: bifurcation behaviors of reaction
systems. We prove that the determinant of the Jacobian
matrix J of a reaction system is equivalent to that of
the augmented matrix A for the corresponding network
structure. Based on this equivalence, we study steady-
state bifurcations of reaction systems from network struc-
tures. In this Letter, our usage of “parameter” always
means a parameter associated with a reaction rate.

From the structural bifurcation analysis based on the
matrix A, we obtain the following general results on
steady-state bifurcations in reaction networks.

(i) Factorization: A is factorized into submatrices
based on the buffering structures (Fig. 1(3)). It implies
that bifurcation behaviors in a complex network can
be studied by decomposing it into smaller subnetworks,
which are buffering structures with subtraction of their
inner buffering structures. For each subnetwork, the con-
dition of bifurcation occurrence is determined from the
structure of the subnetwork.
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(ii) Inducing parameters: For each subnetwork, bifur-
cation is induced by parameter changes which are neither
in buffering structures inside the subnetwork nor those
non-intersecting with the subnetwork (Fig. 1 (4)).

(iii) Bifurcating chemicals (and fluxes): When the con-
dition of bifurcation associated with a subnetwork is sat-
isfied, the bifurcation of steady-state concentrations (and
fluxes) appears only inside the (minimal) buffering struc-
ture containing the subnetwork (Fig. 1 (5)).

These findings make it possible to study behaviors of
a whole reaction system including multiple bifurcations
based on inclusion relations of buffering structures. We
apply our method to hypothetical and real networks, and
demonstrate the practical usefulness to analyze behaviors
of complex systems.
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tems are realized by modulations of amount/activities of
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turbations of enzyme amount/activities are determined
from network structures alone. Our method is based on
an augmented matrixA (see Eq. (3)), in which the distri-
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tures. One of the striking result is the law of localization
[10]. A substructure (subset of chemicals and reactions)
in a reaction network satisfying a topological condition
is called buffering structure (Fig. 1(1), (2)), and has the
property that perturbations of reaction rate parameters
inside a buffering structure influence only (steady-state)
concentrations and fluxes inside this structure, and the
outside remains unchanged under the perturbations.

In this Letter, we study another aspect governed by
buffering structures: bifurcation behaviors of reaction
systems. We prove that the determinant of the Jacobian
matrix J of a reaction system is equivalent to that of
the augmented matrix A for the corresponding network
structure. Based on this equivalence, we study steady-
state bifurcations of reaction systems from network struc-
tures. In this Letter, our usage of “parameter” always
means a parameter associated with a reaction rate.

From the structural bifurcation analysis based on the
matrix A, we obtain the following general results on
steady-state bifurcations in reaction networks.

(i) Factorization: A is factorized into submatrices
based on the buffering structures (Fig. 1(3)). It implies
that bifurcation behaviors in a complex network can
be studied by decomposing it into smaller subnetworks,
which are buffering structures with subtraction of their
inner buffering structures. For each subnetwork, the con-
dition of bifurcation occurrence is determined from the
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(ii) Inducing parameters: For each subnetwork, bifur-
cation is induced by parameter changes which are neither
in buffering structures inside the subnetwork nor those
non-intersecting with the subnetwork (Fig. 1 (4)).

(iii) Bifurcating chemicals (and fluxes): When the con-
dition of bifurcation associated with a subnetwork is sat-
isfied, the bifurcation of steady-state concentrations (and
fluxes) appears only inside the (minimal) buffering struc-
ture containing the subnetwork (Fig. 1 (5)).

These findings make it possible to study behaviors of
a whole reaction system including multiple bifurcations
based on inclusion relations of buffering structures. We
apply our method to hypothetical and real networks, and
demonstrate the practical usefulness to analyze behaviors
of complex systems.
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the augmented matrix A for the corresponding network
structure. Based on this equivalence, we study steady-
state bifurcations of reaction systems from network struc-
tures. In this Letter, our usage of “parameter” always
means a parameter associated with a reaction rate.

From the structural bifurcation analysis based on the
matrix A, we obtain the following general results on
steady-state bifurcations in reaction networks.

(i) Factorization: A is factorized into submatrices
based on the buffering structures (Fig. 1(3)). It implies
that bifurcation behaviors in a complex network can
be studied by decomposing it into smaller subnetworks,
which are buffering structures with subtraction of their
inner buffering structures. For each subnetwork, the con-
dition of bifurcation occurrence is determined from the
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(ii) Inducing parameters: For each subnetwork, bifur-
cation is induced by parameter changes which are neither
in buffering structures inside the subnetwork nor those
non-intersecting with the subnetwork (Fig. 1 (4)).

(iii) Bifurcating chemicals (and fluxes): When the con-
dition of bifurcation associated with a subnetwork is sat-
isfied, the bifurcation of steady-state concentrations (and
fluxes) appears only inside the (minimal) buffering struc-
ture containing the subnetwork (Fig. 1 (5)).

These findings make it possible to study behaviors of
a whole reaction system including multiple bifurcations
based on inclusion relations of buffering structures. We
apply our method to hypothetical and real networks, and
demonstrate the practical usefulness to analyze behaviors
of complex systems.
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outside remains unchanged under the perturbations.
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buffering structures: bifurcation behaviors of reaction
systems. We prove that the determinant of the Jacobian
matrix J of a reaction system is equivalent to that of
the augmented matrix A for the corresponding network
structure. Based on this equivalence, we study steady-
state bifurcations of reaction systems from network struc-
tures. In this Letter, our usage of “parameter” always
means a parameter associated with a reaction rate.

From the structural bifurcation analysis based on the
matrix A, we obtain the following general results on
steady-state bifurcations in reaction networks.

(i) Factorization: A is factorized into submatrices
based on the buffering structures (Fig. 1(3)). It implies
that bifurcation behaviors in a complex network can
be studied by decomposing it into smaller subnetworks,
which are buffering structures with subtraction of their
inner buffering structures. For each subnetwork, the con-
dition of bifurcation occurrence is determined from the
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(ii) Inducing parameters: For each subnetwork, bifur-
cation is induced by parameter changes which are neither
in buffering structures inside the subnetwork nor those
non-intersecting with the subnetwork (Fig. 1 (4)).

(iii) Bifurcating chemicals (and fluxes): When the con-
dition of bifurcation associated with a subnetwork is sat-
isfied, the bifurcation of steady-state concentrations (and
fluxes) appears only inside the (minimal) buffering struc-
ture containing the subnetwork (Fig. 1 (5)).

These findings make it possible to study behaviors of
a whole reaction system including multiple bifurcations
based on inclusion relations of buffering structures. We
apply our method to hypothetical and real networks, and
demonstrate the practical usefulness to analyze behaviors
of complex systems.
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Introduction.—In a living cell, a large set of chemical
reactions are connected by sharing their products and
substrates, and constructing a large network. Biological
functions are believed to arise from dynamics of chemical
concentrations based on the networks. It is also consid-
ered that regulations and adaptations of biological sys-
tems are realized by modulations of amount/activities of
enzymes mediating reactions. In previous studies [7, 10],
we developed a mathematical method, by which the sen-
sitivity responses of chemical reaction networks to per-
turbations of enzyme amount/activities are determined
from network structures alone. Our method is based on
an augmented matrixA (see Eq. (3)), in which the distri-
bution of nonzero entries directly reflects network struc-
tures. One of the striking result is the law of localization
[10]. A substructure (subset of chemicals and reactions)
in a reaction network satisfying a topological condition
is called buffering structure (Fig. 1(1), (2)), and has the
property that perturbations of reaction rate parameters
inside a buffering structure influence only (steady-state)
concentrations and fluxes inside this structure, and the
outside remains unchanged under the perturbations.

In this Letter, we study another aspect governed by
buffering structures: bifurcation behaviors of reaction
systems. We prove that the determinant of the Jacobian
matrix J of a reaction system is equivalent to that of
the augmented matrix A for the corresponding network
structure. Based on this equivalence, we study steady-
state bifurcations of reaction systems from network struc-
tures. In this Letter, our usage of “parameter” always
means a parameter associated with a reaction rate.

From the structural bifurcation analysis based on the
matrix A, we obtain the following general results on
steady-state bifurcations in reaction networks.

(i) Factorization: A is factorized into submatrices
based on the buffering structures (Fig. 1(3)). It implies
that bifurcation behaviors in a complex network can
be studied by decomposing it into smaller subnetworks,
which are buffering structures with subtraction of their
inner buffering structures. For each subnetwork, the con-
dition of bifurcation occurrence is determined from the
structure of the subnetwork.
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(ii) Inducing parameters: For each subnetwork, bifur-
cation is induced by parameter changes which are neither
in buffering structures inside the subnetwork nor those
non-intersecting with the subnetwork (Fig. 1 (4)).

(iii) Bifurcating chemicals (and fluxes): When the con-
dition of bifurcation associated with a subnetwork is sat-
isfied, the bifurcation of steady-state concentrations (and
fluxes) appears only inside the (minimal) buffering struc-
ture containing the subnetwork (Fig. 1 (5)).

These findings make it possible to study behaviors of
a whole reaction system including multiple bifurcations
based on inclusion relations of buffering structures. We
apply our method to hypothetical and real networks, and
demonstrate the practical usefulness to analyze behaviors
of complex systems.
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structure. Based on this equivalence, we study steady-
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(ii) Inducing parameters: For each subnetwork, bifur-
cation is induced by parameter changes which are neither
in buffering structures inside the subnetwork nor those
non-intersecting with the subnetwork (Fig. 1 (4)).

(iii) Bifurcating chemicals (and fluxes): When the con-
dition of bifurcation associated with a subnetwork is sat-
isfied, the bifurcation of steady-state concentrations (and
fluxes) appears only inside the (minimal) buffering struc-
ture containing the subnetwork (Fig. 1 (5)).

These findings make it possible to study behaviors of
a whole reaction system including multiple bifurcations
based on inclusion relations of buffering structures. We
apply our method to hypothetical and real networks, and
demonstrate the practical usefulness to analyze behaviors
of complex systems.
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tures. One of the striking result is the law of localization
[10]. A substructure (subset of chemicals and reactions)
in a reaction network satisfying a topological condition
is called buffering structure (Fig. 1(1), (2)), and has the
property that perturbations of reaction rate parameters
inside a buffering structure influence only (steady-state)
concentrations and fluxes inside this structure, and the
outside remains unchanged under the perturbations.

In this Letter, we study another aspect governed by
buffering structures: bifurcation behaviors of reaction
systems. We prove that the determinant of the Jacobian
matrix J of a reaction system is equivalent to that of
the augmented matrix A for the corresponding network
structure. Based on this equivalence, we study steady-
state bifurcations of reaction systems from network struc-
tures. In this Letter, our usage of “parameter” always
means a parameter associated with a reaction rate.

From the structural bifurcation analysis based on the
matrix A, we obtain the following general results on
steady-state bifurcations in reaction networks.

(i) Factorization: A is factorized into submatrices
based on the buffering structures (Fig. 1(3)). It implies
that bifurcation behaviors in a complex network can
be studied by decomposing it into smaller subnetworks,
which are buffering structures with subtraction of their
inner buffering structures. For each subnetwork, the con-
dition of bifurcation occurrence is determined from the
structure of the subnetwork.

 
 
 

(2) Buffering structures in A 

(3) Factorization of  
bifurcation condition 

(1) Example network 

=A

(1) Example network 

(4) Inducing parameters 

(5) Bifurcating chemicals 

! " ! 
! ! " 

" 

re
ac

tio
ns

 

chemicals, cycles 

FIG. 1: Summary of the structural bifurcation analysis.
(1) Buffering structures (red boxes) in an example
network. (2) Buffering structure corresponds to

nonzero square blocks in A. (3) Bifurcations in the
whole system are governed by a product of buffering
structures with subtraction of their inner buffering
structures. (4) For each subnetwork, parameters in

shadowed area can induce bifurcations associated with
the subnetwork. (5) For each subnetwork, chemicals in

shadowed area exhibit bifurcations.

(ii) Inducing parameters: For each subnetwork, bifur-
cation is induced by parameter changes which are neither
in buffering structures inside the subnetwork nor those
non-intersecting with the subnetwork (Fig. 1 (4)).

(iii) Bifurcating chemicals (and fluxes): When the con-
dition of bifurcation associated with a subnetwork is sat-
isfied, the bifurcation of steady-state concentrations (and
fluxes) appears only inside the (minimal) buffering struc-
ture containing the subnetwork (Fig. 1 (5)).

These findings make it possible to study behaviors of
a whole reaction system including multiple bifurcations
based on inclusion relations of buffering structures. We
apply our method to hypothetical and real networks, and
demonstrate the practical usefulness to analyze behaviors
of complex systems.
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FIG. 4: Central carbon metabolic network of E. coli. Dashed curve indicates a regulation from PEP to reaction 11
(r11,PEP > 0). ɹ The right panel shows simplified inclusion relation of buffering structures.

in Fig. 3a, the parameter k5,B in Γ̄s actually induces sign changes of detAΓ̄s
but not those of detAΓs (two saddle-node

bifurcations). The bifurcating chemicals for Γ̄s are all chemicals {A, B, C} (see the purple-shaded region of the top
panel). Fig. 3a actually shows that both chemicals A and C exhibit steady-state bifurcations. On the other hand,
varying parameters in Γs changes only concentrations in Γs, due to the law of localization. This is illustrated by the
blue and red curves in Fig. 3a. We see that only the concentration of chemical A changes as parameters in Γs are
varied, while the critical value of the bifurcation parameter k5,B is independent of parameters in Γs.

Next, we consider the other bifurcation, which is associated with detAΓs . The inducing parameters for the sub-
network Γs consist of all parameters in Γs and Γ̄s (see the green-shaded region in the top panels of Fig. 3b). The
plots of detAΓs in Fig. 3b show that the parameter k3,A ∈ Γs indeed induces bifurcations associated with detAΓs .
The bifurcating chemicals for Γs are the chemicals in Γs, i.e. {A} (the purple-shaded region in the top panel). This
can be confirmed from the plots for x∗

A, x
∗
C in Fig. 3b, where only the steady-state of chemical A ∈ Γs bifurcates at

the bifurcation point, while chemical C ∈ Γ̄s remains constant as k3,A ∈ Γs is varied, due to the law of localization.
The law of localization also implies that varying parameters in Γ̄s can change concentrations of all chemicals. This is
illustrated by the two curves in Fig. 3b, where two different values of parameters in Γ̄s result in different concentration
values for both of chemicals A and C. In addition, varying parameters in Γ̄s also influences the critical value of the
bifurcation parameter k3,A.

There is another choice of bifurcation parameter for the bifurcation associated with detAΓs , as the inducing
parameters for Γs are not only parameters in Γs but also those in Γ̄s (see the green-shaded region in the top panel
of Fig. 3c). The parameter k5,B ∈ Γ̄s, which was chosen as a bifurcation parameter in Fig. 3a, also induces the
bifurcation associated with detAΓs (see the plots for detAΓs in Fig. 3c). This implies that the same parameter may
induce bifurcations for different sets of chemicals depending on which factor of detAΓs and detAΓ̄s

changes its sign
at the critical points. As in the case of Fig. 3b, the bifurcating chemicals are in Γs (see the purple-shaded region
in the top panel of Fig. 3c). Thus we see that only chemical A ∈ Γs bifurcates at the critical point in Fig. 3c. In
particular, k5,B does not induce the bifurcations of chemicals in Γ̄s, unlike the case of Fig. 3a. On the other hand,
because of the law of localization, parameters in Γs influence only chemical A ∈ Γs, as illustrated by the two curves
in Fig. 3c, corresponding to two different values of parameters in Γs. By contrast to Fig. 3a, the critical value of the
bifurcation parameter k5,B ∈ Γ̄s is influenced by parameters in Γs.

V. E. COLI NETWORK

Finally, as a real example, we study the network of the central carbon metabolism of E. coli [10] shown in Fig. 4,
consisting of 28 chemicals and 46 reactions. The network possesses 17 buffering structures in it. As shown in the SM,
there is only one single subnetwork (colored in red in Fig. 4) that can satisfy the bifurcation condition. Reactions
associated with the inducing parameters for the red subnetwork are colored in red and green. The bifurcating chemicals
(and fluxes) are colored in red and blue. We confirmed this behavior numerically (see Fig. S4 in the SM).

Our method is applicable to any steady-state bifurcations of reaction systems even if systems have cokernel vectors.
In the SM, we apply our theory to a phosphorylation system [13] with cokernel vectors (i.e. conserved concentrations),
and the First Schlögl Model [12], exhibiting transcritical bifurcations.
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17 subnetworks 

=�
分岐条件の分解 

分岐パラメータ 

分岐を示す分子 

We can confirm that only this factor can become zero  

=�
分岐条件の分解 
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分岐条件の分解 
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分岐条件の分解 
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分岐を示す分子 

＝ × …　 

(2) Bifurcation parameters 

(1) Network decomposition 

(3) Bifurcating chemicals 

Only chemicals in blue and red 	
exhibit bifurcation behaviors	

Example. E.coli central carbon network 



Summary	

•  Responses	and	network	topology	
– Responses	are	determined	from	network	topology		
– Buffering	structures	explain	response	patterns	

	

•  Bifurcation	and	network	topology	
– Det	J	=	Det	A	
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