Dynamics and mechanisms of nuclear migration in neurons

KUIAS-iCeMS

Mineko Kengaku

CeMS

Dynamic cell motility in developing brains

cell differentiation 細胞分化

Process arborization 突起形成 neural network formation

Neurons reach appropriate positions

Process formation and coupling

Migration of neurons in the central nervous system

Summary diagram of Golgi staining of cerebral cortex. Ramón y Cajal (1911)

Live-cell observation of granule cell migration in slice culture

Umeshima et al., PNAS 2007 Umeshima et al., Mol Cell Neurosci. 2012

The Cytoskeleton and Cell Migration: Vic Small lab Website

20-min intervals 8 frames/sec

Nuclear movement in fibroblasts and neurons

Fibroblast migration

Neuronal migration

Figure 16–85. Molecular Biology of the Cell, 4th Edition.

actin-dependent

actin+microtubule-dependent

Nucleus migrates independently of leading process elongation

GFP DsRed-Nuc

3-min intervals 8 frames/sec

Push or pull? What do cytoskeletons do for nuclear migration?

Invasive strategies (ablation, disruption) may indirectly affect cell behaviors

Trivedi and Solecki 2011

High-speed, high-resolution live-cell imaging by the CSU confocal microscopy

FIGURE 2-71. Yokogawa high-speed confocal system. Microlenses on a second Nipkow disk increase disk transmission to 40-60% instead of a fraction of a percent as in conventional, single-Nipkow-disk systems. The microlens and pinhole arrays are patterned to give a homogeneous field with no sign of scan lines. (From Ichihara et al., 1996.)

"Video Microscopy", Inoue and Spring, 1997

Nipkow disc confocal microscopy

100x objective

Z: 10~12 planes 3 channels (GFP, RFP, DIC) ⇒total ~36 planes (less than 8 sec)

time-lapse imaging: every 15 sec for 1~2 hours

15-sec interval 20 frames/sec

Estimate the force applied to the nucleus from its motion

Nucleus rotates in *migrating* neurons

Centrosome and Golgi do not rotate with the nucleus

Golgi1-GFP HP1β-mCherry DIC

Hypothetical Mechanism of the Nuclear Rotation

Uniform (bilateral) force drives migration Unbalanced (unilateral) force drives rotation

If so...

1. Rotation axis should be orthogonal to the migration trajectory

2. Rotation should stop when the nucleus is disconnected with cytoskeletons

Image analysis of nuclear rotation

3D movie 1 hr (interval: 15 sec)

HP 1β-mCherry MIP images

Rotation axis is relevant to migration direction

Angles between the rotation axis and migration trajectory

Rotation axis should be orthogonal to the migration trajectory

Microtubules, but not actin, are involved in nuclear rotation

translocation

90

Synchronous movement of microtubule network and nucleus

HP 1β-mCherry microtubules

15-sec interval 7 frames/sec

Dynein and kinesin are involved in nuclear rotation

KLC1-TRP

Perinuclear microtubules are bidirectional in migrating neurons

previous view: MTs are uniformly oriented with (+)-toward the nucleus

How can kinesin function?

EB3-GFP centrin2-GFP

5-sec intervals 6 frames/sec

Both kinesin and dynein can contribute to nuclear transport

Kinesin-1 is not sufficient to drive nuclear rotation

nesp2-SR / Nuc

The nucleus retains sharp deformation in the front

Kinesin/MTs generate point force on the nuclear surface

GFP / Nuc

nesp2-SR / Nuc

Dynamic interaction of MT motors is critical for driving nuclear rotation

Summary and conclusion

kinesin-1

Wu et al., Development 2018

<u>iCeMS, Kyoto Univ.</u> <u>Kengaku Lab</u>

Naotaka Nakazawa Hiroki Umeshima You Kure Wu William Theoputra Chuying Zhou Yuki Utsunomiya Kazuto Fujishima Kelly Kawabata Galbraith Akane Hatsuda Kakeru Inoue Rebecca Jimenez

<u>Mechanobiology Institute, Singapore</u> Gianluca Grenci

You Kure Wu Hiroki Umishima Naotaka Nakazawa

Chuying Zhou

Interplay of developmental clock and extracellular environment in brain formation

William Theoputra