New eyes on X-ray astrophysical objects with Japanese and Chinese observatories 19-21 November 2018 **P02** Time-resolved hard X-ray spectra of the solar flares with the Suzaku HXD-WAM

Sota Murakami (M2, Saitama Univ.)

smurakami@heal.phy.saitama-u.ac.jp

Abstract The solar flares are one of the biggest energy-release phenomena driven by magnetic reconnections in the solar atmosphere. The electrons accelerated by magnetic reconnections radiate hard X-ray emissions via non-thermal bremsstrahlung at the foot-points and/or the loop-top (Masuda et al. 1994). Observationally, the emission exhibits power-law spectral shapes, which in turn represent the energy distributions of the accelerated electrons. In addition, Ishikawa et al. (2011) describes that the X-ray peak of a foot-point delays ~10 sec from that of the accelerated electrons from the loop-top to the foot-points. However, finer time bins and pile-up corrections are needed to investigate the detailed transfer of the accelerated electrons.

We performed time-resolved spectroscopy of the solar flares observed by the Suzaku HXD-WAM, which is the BGO scintillator surrounding the Suzaku hard X-ray detector and was used as all sky monitor in the 50-5000 keV (Yamaoka et al. 2009). In our analyses, we studied the time evolution of photon indices and fluxes every 1 sec, after taking into account pile-up corrections using the Geant4-based pile-up simulator (Yasuda et al. 2015). As a result, we found that the peak time of the flux in the high energy band (520-5000 keV) is later than that in the low energy band (50-110 keV). This result supports the picture described in Ishikawa et al. (2011) that the accelerated electrons at the loop-top precipitate into the foot-points after several seconds.

1. Solar flares

- The solar flares are driven by magnetic reconnections in the solar atmosphere.
- The accelerated electrons radiate hard X-ray emissions via non-thermal bremsstrahlung at the foot-points and/or the loop-top [1].

4. Results

 Observationally, the emission exhibits power-law spectral shapes, which in turn represent the energy distributions of the accelerated electrons.

Previous study with RHESSI

Ishikawa et al. (2011) reports that the X-ray peak of a foot-point delays about 10 sec from that of the loop-top emission due to the transit time of the accelerated electrons from the loop-top to the foot-points [2].

Finer time bins and pile-up corrections are needed to investigate the detailed transfer of the accelerated electrons.

In this study

We performed time-resolved spectroscopy of the solar flares observed by the Suzaku HXD-WAM, with finer time bins taking into account pile-up corrections.

2. Suzaku HXD-WAM

Wide band All sky Monitor (WAM) is the BGO scintillator surrounding the Suzaku hard X-ray detector [3].

Pile-up corrections

Saitama

Astrophysics Laborator

University

WAMO faces the sun.

Tab. 1 Characteristics of the Suzaku HXD-WAM

Number of detectors 4 units

Energy range	50-5000 keV
Field of view	2π sr (per side)
Effective area	400 cm ² @ 1 MeV (per side)
Time resolution	1 sec

3. Observations and Data reduction

WAM has observed 756 solar flares from 2005 to 2015.

Event selection

- X class of GOES *1 classes
- Detected ≥ 500 keV band
- No earth occultation and SAA during the event

We analyzed 10 events Only 1 event is affected by the pile-up effect

- The peak time of the flux in the high energy band (520-5000 keV) is later than that in the low energy band (50-110 keV).
- The delay is 1-10 sec.

(2011) that the accelerated electrons at the loop-top

precipitate into the foot-points after several seconds.

or double power-law functions.

single power-law : $A(E) = KE^{-\alpha}$ double power-law : $A(E) = K_1 E^{-\alpha_1} + K_2 E^{-\alpha_2}$

We derived the time evolution of photon indices and fluxes in every **1** sec time-resolved spectra during T_{90}^{*2} of each event.

We took into account pile-up corrections using the Geant4-based pile-up simulator [4].

We compared the observed spectrum and the simulated spectrum using chi-squared test

*1. GOES : American satellite observing the soft X-ray emission of solar flares *2. T_{90} : The time duration that the sum of 50-5000 keV counts reaches 5 % to 95 % in the entire event

5. Summary

 We carried out time-resolved hard X-ray spectroscopy of 10 solar flares observed by the Suzaku HXD-WAM.

• The spectra show double power-law shape around the flare peak, in which the peak time in the high energy band (520-5000 keV) follows that in the low energy band (50-100 keV) by 1-10 sec. • Our result supports the picture that the accelerated electrons at the loop-top precipitate into the foot-points after several seconds.

Reference

[1] Masuda et al. 1994, *Nature*, 371, 495 [2] Ishikawa et al. 2011, *ApJ*, 737, 48 [3] Yamaoka et al. 2009, *PASJ*, 61, 35

[4] Yasuda et al. 2015, *PASJ*, 67, 41 [5] Yamaoka et al. 2017, *PASJ*, 69, R2