In-orbit Neutron Background of the Hard X-ray Imager onboard Hitomi Hiromasa Suzuki (The University of Tokyo),

K. Nakazawa, K. Hagino, H. Odaka, A. Bamba, G. Sato, M. Kokubun, T. Enoto, Y. Fukazawa, K. Hayashi, J. Kataoka, J. Katsuta, S. B. Kobayashi, P. Laurent, F. Lebrun, O. Limousin, D. Maier, K. Makishima, T. Mimura, K. Miyake, T. Mizuno, K. Mori, H. Murakami, T. Nakamori, T. Nakano, H. Noda, M. Ohno, M. Ohta, S. Šaito, R. Sato, H. Tajima, H. Takahashi, T. Takahashi, S. Takeda, T. Tanaka, Y. Terada, H. Uchiyama, Y. Uchiyama, S. Watanabe, K. Yamaoka, Y. Yatsu, T. Yuasa, and the HXI team

- > The data of blank-sky observations obtained with DSSD2-4 were used.
- \succ Excluded from the data: Periods with high electron rates. Periods with strong radioactivation.

Logs of the blank-sky observations used in this work.

Observation period	OBSID	Target name

Introduction

In order to achieve higher sensitivities in hard X-ray band:

- Improving S/N ratio by focusing X-rays.
- © Reducing non-X-ray background.
- \rightarrow Need to understand the properties of background.
- The background component produced by atmospheric neutrons has been poorly understood, although it has significant contribution to the entire background. (Mizuno+10) \rightarrow Aim of this work:

Understanding the contribution of atmospheric neutron background quantitatively.

Results

DSSD2-4 rate showed a spatial correlation with CR flux obtained with the CR monitor. \rightarrow DSSD2-4 backgorund seems to be dominated by atmospheric particles (neutrons and gamma-rays).

_onaitude (dearee

- Linear function correlations between CR fluxes and DSSD 2-4 rates were found in all of the six energy ranges.
 - \rightarrow Atmospheric particles should be the proportional component (Ax).
- We subtracted the spectrum in low-CR periods from that in high-CR periods, to obtain "Difference spectrum".
- We conducted a Monte-Carlo simulation using Geant4 toolkit to estimate the spectrum of atmospheric particles. (Armstrong+73, Odaka+18) The shape of the difference spectrum required pure atmospheric neutron spectrum.
- Spectral differences among DSSD2, 3, 4 were small. = Background particles had high penetrating power.
 - \rightarrow Consistent with that the atmospheric neutron background is dominant.
- We determined the contribution and spatial variations of

atmospheric neutrons. \rightarrow Feedback to simulations.

Conclusion & Future work

- > We investigated background produced by atmospheric neutrons, which has a significant contribution to the entire non-X-ray background but has been poorly understood.
- > We found that the screened background rate had positive correlation with the CR flux in orbit, suggesting that the background was dominated by the atmospheric neutrons.
- > Using this correlation, we extracted the spectrum and spatial variations of the neutron background.
- > Comparison between the extracted neutron background measurement and estimates by our Monte-Carlo simulations confirmed that the extracted background could be explained by atmospheric neutrons.
- > In future missions, background can be reduced significantly by neutron shields, using more plausible estimations.

References:

Armstrong, T. W. and Chandler, K. C. and Barish, J., 1973, Journal of Geophysical Research, 78, 16; Hagino, K., Nakazawa, K., Sato, G., et al. 2018, Journal of Astronomical Telescopes, Instruments, and Systems, 4, 021409; Mizuno, T., Hiragi, K., Fukazawa, Y., Proc.SPIE, 77323C; Nakazawa, K., Sato, G., Kokubun, M., et al. 2018, Journal of Astronomical Telescopes, Instruments, and Systems, 4, 021410; Odaka, H., Asai, M., Hagino, K., et al. 2018, Nuclear Instruments and Methods in Physics Research A, 891, 92

